Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update why-conv.md #1326

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions chapter_convolutional-neural-networks/why-conv.md
Original file line number Diff line number Diff line change
Expand Up @@ -91,12 +91,12 @@ $$(f * g)(\mathbf{x}) = \int f(\mathbf{z}) g(\mathbf{x}-\mathbf{z}) d\mathbf{z}.

$$(f * g)(i) = \sum_a f(a) g(i-a).$$

对于二维张量,则为$f$的索引$(a, b)$和$g$的索引$(i-a, j-b)$上的对应加和
对于二维张量,则为$f$的索引$(a, b)$和$g$的索引$(i-a, j-b)$上的对应的求和

$$(f * g)(i, j) = \sum_a\sum_b f(a, b) g(i-a, j-b).$$
:eqlabel:`eq_2d-conv-discrete`

这看起来类似于 :eqref:`eq_conv-layer`,但有一个主要区别:这里不是使用$(i+a, j+b)$,而是使用差值。然而,这种区别是表面的,因为我们总是可以匹配 :eqref:`eq_conv-layer`和 :eqref:`eq_2d-conv-discrete`之间的符号。我们在 :eqref:`eq_conv-layer`中的原始定义更正确地描述了*互相关*(cross-correlation),这个问题将在下一节中讨论。
这看起来类似于 :eqref:`eq_conv-layer`,但有一个主要区别:这里不是使用$(i+a, j+b)$,而是使用$(i-a, j-b)$。当然,这种区别只是表面的,因为我们总是可以匹配 :eqref:`eq_conv-layer`和 :eqref:`eq_2d-conv-discrete`之间的符号。我们在 :eqref:`eq_conv-layer`中的原始定义更正确地描述了*互相关*(cross-correlation),这个问题将在下一节中讨论。

## “沃尔多在哪里”回顾

Expand Down
Loading