Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace ThneedModel with TinygradModel #33532

Merged
merged 20 commits into from
Nov 11, 2024
Merged
2 changes: 1 addition & 1 deletion release/release_files.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@
"tools/joystick/",
"tools/longitudinal_maneuvers/",

"tinygrad_repo/openpilot/compile2.py",
"tinygrad_repo/examples/openpilot/compile3.py",
"tinygrad_repo/extra/onnx.py",
"tinygrad_repo/extra/onnx_ops.py",
"tinygrad_repo/extra/thneed.py",
Expand Down
37 changes: 13 additions & 24 deletions selfdrive/modeld/SConscript
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,6 @@ common_src = [
"transforms/transform.cc",
]

thneed_src_common = [
"thneed/thneed_common.cc",
"thneed/serialize.cc",
]

thneed_src_qcom = thneed_src_common + ["thneed/thneed_qcom2.cc"]
thneed_src_pc = thneed_src_common + ["thneed/thneed_pc.cc"]
thneed_src = thneed_src_qcom if arch == "larch64" else thneed_src_pc

# SNPE except on Mac and ARM Linux
snpe_lib = []
if arch != "Darwin" and arch != "aarch64":
Expand Down Expand Up @@ -59,20 +50,18 @@ fn = File("models/supercombo").abspath
cmd = f'python3 {Dir("#selfdrive/modeld").abspath}/get_model_metadata.py {fn}.onnx'
lenv.Command(fn + "_metadata.pkl", [fn + ".onnx"] + tinygrad_files, cmd)

# Build thneed model
if arch == "larch64" or GetOption('pc_thneed'):
tinygrad_opts = []
if not GetOption('pc_thneed'):
# use FLOAT16 on device for speed + don't cache the CL kernels for space
tinygrad_opts += ["FLOAT16=1", "PYOPENCL_NO_CACHE=1"]
cmd = f"cd {Dir('#').abspath}/tinygrad_repo && " + ' '.join(tinygrad_opts) + f" python3 openpilot/compile2.py {fn}.onnx {fn}.thneed"

lenv.Command(fn + ".thneed", [fn + ".onnx"] + tinygrad_files, cmd)
# Compile tinygrad model
# TODO this is all super hacky
pythonpath_string = 'PYTHONPATH="${PYTHONPATH}:' + env.Dir("#tinygrad_repo").abspath + '"'
if arch == 'larch64':
device_string = 'QCOM=1'
elif arch == 'Darwin' or arch == 'aarch64':
device_string = 'CLANG=1 IMAGE=0'
else:
device_string = 'GPU=1'

fn_dm = File("models/dmonitoring_model").abspath
cmd = f"cd {Dir('#').abspath}/tinygrad_repo && " + ' '.join(tinygrad_opts) + f" python3 openpilot/compile2.py {fn_dm}.onnx {fn_dm}.thneed"
lenv.Command(fn_dm + ".thneed", [fn_dm + ".onnx"] + tinygrad_files, cmd)
for model_name in ['supercombo', 'dmonitoring_model']:
fn = File(f"models/{model_name}").abspath
cmd = f'{pythonpath_string} {device_string} python3 {Dir("#tinygrad_repo").abspath}/examples/openpilot/compile3.py {fn}.onnx {fn}_tinygrad.pkl'
lenv.Command(fn + "_tinygrad.pkl", [fn + ".onnx"] + tinygrad_files, cmd)

thneed_lib = env.SharedLibrary('thneed', thneed_src, LIBS=[gpucommon, common, 'OpenCL', 'dl'])
thneedmodel_lib = env.Library('thneedmodel', ['runners/thneedmodel.cc'])
lenvCython.Program('runners/thneedmodel_pyx.so', 'runners/thneedmodel_pyx.pyx', LIBS=envCython["LIBS"]+[thneedmodel_lib, thneed_lib, gpucommon, common, 'dl', 'OpenCL'])
6 changes: 0 additions & 6 deletions selfdrive/modeld/dmonitoringmodeld
Original file line number Diff line number Diff line change
@@ -1,10 +1,4 @@
#!/usr/bin/env bash

DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null && pwd)"
cd "$DIR/../../"

if [ -f "$DIR/libthneed.so" ]; then
export LD_PRELOAD="$DIR/libthneed.so"
fi

exec "$DIR/dmonitoringmodeld.py" "$@"
47 changes: 27 additions & 20 deletions selfdrive/modeld/dmonitoringmodeld.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,16 @@
#!/usr/bin/env python3
import os
from openpilot.system.hardware import TICI
## TODO this is hack
if TICI:
GPU_BACKEND = 'QCOM'
else:
GPU_BACKEND = 'GPU'
os.environ[GPU_BACKEND] = '1'
import gc
import math
import time
import pickle
import ctypes
import numpy as np
from pathlib import Path
Expand All @@ -14,9 +22,11 @@
from openpilot.common.swaglog import cloudlog
from openpilot.common.params import Params
from openpilot.common.realtime import set_realtime_priority
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext #, cl_from_visionbuf
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid
#from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
from tinygrad.tensor import Tensor
#from tinygrad.dtype import dtypes

CALIB_LEN = 3
MODEL_WIDTH = 1440
Expand All @@ -26,9 +36,7 @@

PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/dmonitoring_model.thneed',
ModelRunner.ONNX: Path(__file__).parent / 'models/dmonitoring_model.onnx'}
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'

class DriverStateResult(ctypes.Structure):
_fields_ = [
Expand Down Expand Up @@ -59,33 +67,32 @@ class DMonitoringModelResult(ctypes.Structure):
class ModelState:
inputs: dict[str, np.ndarray]
output: np.ndarray
model: ModelRunner

def __init__(self, cl_ctx):
assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
self.output = np.zeros(OUTPUT_SIZE, dtype=np.float32)
self.inputs = {
'input_img': np.zeros(MODEL_HEIGHT * MODEL_WIDTH, dtype=np.uint8),
'calib': np.zeros(CALIB_LEN, dtype=np.float32)}
self.numpy_inputs = {'calib': np.zeros((1, CALIB_LEN), dtype=np.float32),
'input_img': np.zeros((1,MODEL_HEIGHT * MODEL_WIDTH), dtype=np.uint8)}
self.img = None

self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, cl_ctx)
self.model.addInput("input_img", None)
self.model.addInput("calib", self.inputs['calib'])

with open(MODEL_PKL_PATH, "rb") as f:
self.model_run = pickle.load(f)

def run(self, buf:VisionBuf, calib:np.ndarray) -> tuple[np.ndarray, float]:
self.inputs['calib'][:] = calib
self.numpy_inputs['calib'][0,:] = calib

t1 = time.perf_counter()
# TODO use opencl buffer directly to make tensor
v_offset = buf.height - MODEL_HEIGHT
h_offset = (buf.width - MODEL_WIDTH) // 2
buf_data = buf.data.reshape(-1, buf.stride)
input_data = self.inputs['input_img'].reshape(MODEL_HEIGHT, MODEL_WIDTH)
input_data[:] = buf_data[v_offset:v_offset+MODEL_HEIGHT, h_offset:h_offset+MODEL_WIDTH]
self.numpy_inputs['input_img'][:] = buf_data[v_offset:v_offset+MODEL_HEIGHT, h_offset:h_offset+MODEL_WIDTH].reshape((1, -1))

tensor_inputs = {k: Tensor(v) for k,v in self.numpy_inputs.items()}
output = self.model_run(**tensor_inputs)['outputs'].numpy().flatten()

self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32))
t1 = time.perf_counter()
self.model.execute()
t2 = time.perf_counter()
return self.output, t2 - t1
return output, t2 - t1


def fill_driver_state(msg, ds_result: DriverStateResult):
Expand Down
72 changes: 44 additions & 28 deletions selfdrive/modeld/modeld.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,12 @@
#!/usr/bin/env python3
import os
from openpilot.system.hardware import TICI
## TODO this is hack
if TICI:
GPU_BACKEND = 'QCOM'
else:
GPU_BACKEND = 'GPU'
os.environ[GPU_BACKEND] = '1'
import time
import pickle
import numpy as np
Expand All @@ -18,21 +25,24 @@
from openpilot.common.transformations.model import get_warp_matrix
from openpilot.system import sentry
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address

from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes

PROCESS_NAME = "selfdrive.modeld.modeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')

MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}

MODEL_PATH = Path(__file__).parent / 'models/supercombo.onnx'
MODEL_PKL_PATH = Path(__file__).parent / 'models/supercombo_tinygrad.pkl'
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'

# TODO: should not hardcoded
IMG_INPUT_SHAPE = (1, 12, 128, 256)

class FrameMeta:
frame_id: int = 0
Expand All @@ -49,7 +59,6 @@ class ModelState:
inputs: dict[str, np.ndarray]
output: np.ndarray
prev_desire: np.ndarray # for tracking the rising edge of the pulse
model: ModelRunner

def __init__(self, context: CLContext):
self.frame = ModelFrame(context)
Expand All @@ -60,13 +69,14 @@ def __init__(self, context: CLContext):
self.prev_desired_curv_20hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32)

# img buffers are managed in openCL transform code
self.inputs = {
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
self.numpy_inputs = {
'desire': np.zeros((1, (ModelConstants.HISTORY_BUFFER_LEN+1), ModelConstants.DESIRE_LEN), dtype=np.float32),
'traffic_convention': np.zeros((1, ModelConstants.TRAFFIC_CONVENTION_LEN), dtype=np.float32),
'lateral_control_params': np.zeros((1, ModelConstants.LATERAL_CONTROL_PARAMS_LEN), dtype=np.float32),
'prev_desired_curv': np.zeros((1,(ModelConstants.HISTORY_BUFFER_LEN+1), ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32),
'features_buffer': np.zeros((1, ModelConstants.HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32),
}
self.img_inputs = {} # type: ignore

with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
Expand All @@ -76,11 +86,8 @@ def __init__(self, context: CLContext):
self.output = np.zeros(net_output_size, dtype=np.float32)
self.parser = Parser()

self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
self.model.addInput("input_imgs", None)
self.model.addInput("big_input_imgs", None)
for k,v in self.inputs.items():
self.model.addInput(k, v)
with open(MODEL_PKL_PATH, "rb") as f:
self.model_run = pickle.load(f)

def slice_outputs(self, model_outputs: np.ndarray) -> dict[str, np.ndarray]:
parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
Expand All @@ -97,18 +104,27 @@ def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_

self.desire_20Hz[:-1] = self.desire_20Hz[1:]
self.desire_20Hz[-1] = new_desire
self.inputs['desire'][:] = self.desire_20Hz.reshape((25,4,-1)).max(axis=1).flatten()

self.inputs['traffic_convention'][:] = inputs['traffic_convention']
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']

self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
self.numpy_inputs['desire'][:] = self.desire_20Hz.reshape((1,25,4,-1)).max(axis=2)

self.numpy_inputs['traffic_convention'][:] = inputs['traffic_convention']
self.numpy_inputs['lateral_control_params'][:] = inputs['lateral_control_params']
input_imgs_cl = self.frame.prepare(buf, transform.flatten())
big_input_imgs_cl = self.wide_frame.prepare(wbuf, transform_wide.flatten())

if TICI:
# The imgs tensors are backed by opencl memory, only need init once
if 'input_imgs' not in self.img_inputs:
self.img_inputs['input_imgs'] = qcom_tensor_from_opencl_address(input_imgs_cl.mem_address, IMG_INPUT_SHAPE, dtype=dtypes.uint8)
self.img_inputs['big_input_imgs'] = qcom_tensor_from_opencl_address(big_input_imgs_cl.mem_address, IMG_INPUT_SHAPE, dtype=dtypes.uint8)
else:
self.img_inputs['input_imgs'] = Tensor(self.frame.buffer_from_cl(input_imgs_cl)).reshape(IMG_INPUT_SHAPE)
self.img_inputs['big_input_imgs'] = Tensor(self.wide_frame.buffer_from_cl(big_input_imgs_cl)).reshape(IMG_INPUT_SHAPE)

tensor_inputs = {**self.img_inputs, **{k: Tensor(v) for k,v in self.numpy_inputs.items()}}
if prepare_only:
return None

self.model.execute()
self.output = self.model_run(**tensor_inputs)['outputs'].numpy().flatten()
outputs = self.parser.parse_outputs(self.slice_outputs(self.output))

self.full_features_20Hz[:-1] = self.full_features_20Hz[1:]
Expand All @@ -118,9 +134,9 @@ def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_
self.prev_desired_curv_20hz[-1] = outputs['desired_curvature'][0, :]

idxs = np.arange(-4,-100,-4)[::-1]
self.inputs['features_buffer'][:] = self.full_features_20Hz[idxs].flatten()
self.numpy_inputs['features_buffer'][:] = self.full_features_20Hz[idxs]
# TODO model only uses last value now, once that changes we need to input strided action history buffer
self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = 0. * self.prev_desired_curv_20hz[-4, :]
self.numpy_inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = 0. * self.prev_desired_curv_20hz[-4, :]
return outputs


Expand Down Expand Up @@ -189,7 +205,7 @@ def main(demo=False):
cloudlog.info("modeld got CarParams: %s", CP.carName)

# TODO this needs more thought, use .2s extra for now to estimate other delays
steer_delay = CP.steerActuatorDelay + .2
steer_delay = .2

DH = DesireHelper()

Expand Down
29 changes: 15 additions & 14 deletions selfdrive/modeld/models/commonmodel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

ModelFrame::ModelFrame(cl_device_id device_id, cl_context context) {
input_frames = std::make_unique<uint8_t[]>(buf_size);
input_frames_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, buf_size, NULL, &err));

q = CL_CHECK_ERR(clCreateCommandQueue(context, device_id, 0, &err));
y_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, MODEL_WIDTH * MODEL_HEIGHT, NULL, &err));
Expand All @@ -22,7 +23,7 @@ ModelFrame::ModelFrame(cl_device_id device_id, cl_context context) {
loadyuv_init(&loadyuv, context, device_id, MODEL_WIDTH, MODEL_HEIGHT);
}

uint8_t* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3 &projection, cl_mem *output) {
cl_mem* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3 &projection) {
transform_queue(&this->transform, q,
yuv_cl, frame_width, frame_height, frame_stride, frame_uv_offset,
y_cl, u_cl, v_cl, MODEL_WIDTH, MODEL_HEIGHT, projection);
Expand All @@ -31,19 +32,19 @@ uint8_t* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, i
CL_CHECK(clEnqueueCopyBuffer(q, img_buffer_20hz_cl, img_buffer_20hz_cl, (i+1)*frame_size_bytes, i*frame_size_bytes, frame_size_bytes, 0, nullptr, nullptr));
}
loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, last_img_cl);
if (output == NULL) {
CL_CHECK(clEnqueueReadBuffer(q, img_buffer_20hz_cl, CL_TRUE, 0, frame_size_bytes, &input_frames[0], 0, nullptr, nullptr));
CL_CHECK(clEnqueueReadBuffer(q, last_img_cl, CL_TRUE, 0, frame_size_bytes, &input_frames[MODEL_FRAME_SIZE], 0, nullptr, nullptr));
clFinish(q);
return &input_frames[0];
} else {
copy_queue(&loadyuv, q, img_buffer_20hz_cl, *output, 0, 0, frame_size_bytes);
copy_queue(&loadyuv, q, last_img_cl, *output, 0, frame_size_bytes, frame_size_bytes);

// NOTE: Since thneed is using a different command queue, this clFinish is needed to ensure the image is ready.
clFinish(q);
return NULL;
}

copy_queue(&loadyuv, q, img_buffer_20hz_cl, input_frames_cl, 0, 0, frame_size_bytes);
copy_queue(&loadyuv, q, last_img_cl, input_frames_cl, 0, frame_size_bytes, frame_size_bytes);

// NOTE: Since thneed is using a different command queue, this clFinish is needed to ensure the image is ready.
clFinish(q);
return &input_frames_cl;
}

uint8_t* ModelFrame::buffer_from_cl(cl_mem *in_frames) {
CL_CHECK(clEnqueueReadBuffer(q, *in_frames, CL_TRUE, 0, MODEL_FRAME_SIZE * 2 * sizeof(uint8_t), &input_frames[0], 0, nullptr, nullptr));
clFinish(q);
return &input_frames[0];
}

ModelFrame::~ModelFrame() {
Expand Down
7 changes: 4 additions & 3 deletions selfdrive/modeld/models/commonmodel.h
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@ class ModelFrame {
public:
ModelFrame(cl_device_id device_id, cl_context context);
~ModelFrame();
uint8_t* prepare(cl_mem yuv_cl, int width, int height, int frame_stride, int frame_uv_offset, const mat3& transform, cl_mem *output);
cl_mem* prepare(cl_mem yuv_cl, int width, int height, int frame_stride, int frame_uv_offset, const mat3& transform);
uint8_t* buffer_from_cl(cl_mem *in_frames);

const int MODEL_WIDTH = 512;
const int MODEL_HEIGHT = 256;
Expand All @@ -32,7 +33,7 @@ class ModelFrame {
Transform transform;
LoadYUVState loadyuv;
cl_command_queue q;
cl_mem y_cl, u_cl, v_cl, img_buffer_20hz_cl, last_img_cl;
cl_mem y_cl, u_cl, v_cl, img_buffer_20hz_cl, last_img_cl, input_frames_cl;
cl_buffer_region region;
std::unique_ptr<uint8_t[]> input_frames;
};
};
3 changes: 2 additions & 1 deletion selfdrive/modeld/models/commonmodel.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,5 @@ cdef extern from "selfdrive/modeld/models/commonmodel.h":
cppclass ModelFrame:
int buf_size
ModelFrame(cl_device_id, cl_context)
unsigned char * prepare(cl_mem, int, int, int, int, mat3, cl_mem*)
cl_mem * prepare(cl_mem, int, int, int, int, mat3)
unsigned char * buffer_from_cl(cl_mem*);
Loading
Loading