A CLI to generate synthetic data for MLX fine-tuning. The CLI is largely translated from the php version here.
Based on this, this, this and this.
Install HomeBrew, it's a package manager that help use to install all other dependencies.
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
Setting up Python3 (if you haven't)
brew install [email protected]
Clone MLX and download the model for fine-tuning.
git clone https://github.com/ml-explore/mlx-examples.git
Download and convert Mistral-7B-Instruct-v0.2.
cd mlx-examples/llm/hf-lllm
pip install -r requirements.txt # or pip3
python convert.py --hf-path mistralai/Mistral-7B-Instruct-v0.2 -q --mlx-path ./Mistral-7B-Instruct-v0.2-mlx-4bit
We are adding -q
for coverting into a 4-bit quantized MLX model to ./Mistral-7B-Instruct-v0.2-mlx-4bit
It will tale some time...
The converted MLX version has something we don't need when fine-tuning the model, edit ./Mistral-7B-Instruct-v0.2-mlx-4bit/config.json
, replace all with:
{
"vocab_size": 32000,
"max_position_embeddings": 32768,
"hidden_size": 4096,
"intermediate_size": 14336,
"num_hidden_layers": 32,
"num_attention_heads": 32,
"sliding_window": null,
"num_key_value_heads": 8,
"hidden_act": "silu",
"initializer_range": 0.02,
"rms_norm_eps": 1e-05,
"use_cache": true,
"rope_theta": 1000000.0,
"attention_dropout": 0.0,
"return_dict": true,
"output_hidden_states": false,
"output_attentions": false,
"torchscript": false,
"torch_dtype": "bfloat16",
"use_bfloat16": false,
"tf_legacy_loss": false,
"pruned_heads": {},
"tie_word_embeddings": false,
"is_encoder_decoder": false,
"is_decoder": false,
"cross_attention_hidden_size": null,
"add_cross_attention": false,
"tie_encoder_decoder": false,
"max_length": 20,
"min_length": 0,
"do_sample": false,
"early_stopping": false,
"num_beams": 1,
"num_beam_groups": 1,
"diversity_penalty": 0.0,
"temperature": 1.0,
"top_k": 50,
"top_p": 1.0,
"typical_p": 1.0,
"repetition_penalty": 1.0,
"length_penalty": 1.0,
"no_repeat_ngram_size": 0,
"encoder_no_repeat_ngram_size": 0,
"bad_words_ids": null,
"num_return_sequences": 1,
"chunk_size_feed_forward": 0,
"output_scores": false,
"return_dict_in_generate": false,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"remove_invalid_values": false,
"exponential_decay_length_penalty": null,
"suppress_tokens": null,
"begin_suppress_tokens": null,
"architectures": [
"MistralForCausalLM"
],
"finetuning_task": null,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"tokenizer_class": null,
"prefix": null,
"bos_token_id": 1,
"pad_token_id": null,
"eos_token_id": 2,
"sep_token_id": null,
"decoder_start_token_id": null,
"task_specific_params": null,
"problem_type": null,
"model_type": "mistral",
"quantization": {
"group_size": 64,
"bits": 4
}
}
Delete example data in mlx-examples/lora/data
, you can delete everything inside.
Install mlxt
, the tool in this repo.
brew install chenhunghan/homebrew-formulae/mlx-training-rs
Generate a training on a topic you are interested in.
export OPENAI_API_KEY=[don't tell me your key]
mlxt --topic="[the topic you are interested, e.g. Large Language Model]"
cd mlx-examples/lora
pip install -r requirements.txt # or pip3
python lora.py --train --model ../llms/hf_llm/Mistral-7B-Instruct-v0.2-mlx-4bit --data ./data --batch-size 1 --lora-layers 4
To chat with your fine-tuned model, see here