Skip to content

Process NALCMS land use data for ingestion into WRF

License

Notifications You must be signed in to change notification settings

chang769/wrf-nalcms

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wrf-nalcms

Urban fraction

Process NALCMS land use data for ingestion into WRF. For conversion of source land use classes (including urban), MODIFIED_IGBP_MODIS_NOAH land use table in WRF is assumed.

Getting started

Set up Python environment, get dependencies, and install

python3 -m venv venv # create a fresh environment
source venv/bin/activate # activate the environment
pip install -U pip # update the package manager
pip install -U https://github.com/cloudruninc/wrf-nalcms # install this package

This will install the nalcms executable program to your path.

Download the NALCMS data

  1. Follow this link.
  2. Download the 30-m land cover from 2015.
  3. Unzip north_america_2015.zip.
  4. Unzip NA_NALCMS_2015_LC_30m_LAEA_mmu5pix_.zip.

This will give you a large TIFF file in your path (NA_NALCMS_2010_v2_LC_30m_LAEA_mmu5pix_.tif).

Running nalcms

Type nalcms -h or nalcms --help to learn how to use nalcms:

nalcms --help
usage: nalcms [-h] [-d] [-c {all,urban}] [-u {single,multi}]
              [--low-density-residential LOW_DENSITY_RESIDENTIAL]
              [--high-density-residential HIGH_DENSITY_RESIDENTIAL]
              [--commercial-industrial COMMERCIAL_INDUSTRIAL]
              nalcms_path geo_em_path

nalcms - Process NALCMS land use data for ingestion into WRF

positional arguments:
  nalcms_path           Path to the NALCMS source TIFF file
  geo_em_path           Path to the geo_em target NetCDF file

optional arguments:
  -h, --help            show this help message and exit
  -d, --demo            NALCMS sampling algorithm demo
  -c {all,urban}, --classes {all,urban}
                        Which classes to process
  -u {single,multi}, --urban {single,multi}
                        Whether to use single or multiple (3) urban classes
                        (default single)
  --low-density-residential LOW_DENSITY_RESIDENTIAL
                        Low density residential urban fraction threshold
                        (default 0.6)
  --high-density-residential HIGH_DENSITY_RESIDENTIAL
                        High density residential urban fraction threshold
                        (default 0.9)
  --commercial-industrial COMMERCIAL_INDUSTRIAL
                        Commercial/industrial urban fraction threshold
                        (default 0.95)

Example use:

nalcms NA_NALCMS_2010_v2_LC_30m_LAEA_mmu5pix_.tif geo_em.d01.nc

nalcms will:

  1. Create a copy of your geo_em file;
  2. Update the following fields: LU_INDEX, FRC_URB2D, LANDUSEF;
  3. Ouput the new geo_em file with a new.nc suffix.

Running the algorithm demo

nalcms --demo NA_NALCMS_2010_v2_LC_30m_LAEA_mmu5pix_.tif geo_em.d01.nc

This will output a set of images describing the sampling procedure, for example:

NALCMS demo

Need help?

Write to [email protected].

Acknowledgement

Development of wrf-nalcms was supported by the National Research Council of Canada.

About

Process NALCMS land use data for ingestion into WRF

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%