2D simulation in X-Z of merging current filaments in a rectangular domain with ideal walls.
Evolves flute-reduced, zero-beta model for vorticity U and magnetic flux Psi, with auxilliary variables Jpar (parallel current density) and phi (electrostatic potential).
dU/dt = [Psi, Jpar] - [phi, U] + nu*Delp2(U)
dPsi/dt = [Psi, phi] + eta * Jpar
Test cases are
single A single current filament at the centre of the domain with eta = 1e-5
single-no-resist A single filament with eta=0
merging Two current filaments with eta=5e-6. These parameters are chosen to be the same as used for MAST simulations in
A.Stanier et al
density n_0 = 5e18 m^-3
Magnetic field B_0 = 0.5 T
Te = Ti = 10eV
To plot the reconnection rate (toroidal electric field),
run the test case then a Python script to analyse:
$ make
$ mpirun -np 16 ./merging-flux -d merging
$ python plot-reconnection.py
merging-no-resist Two current filaments with eta = 0
toroidal Two current filaments in toroidal geometry
$ make
$ mpirun -np 16 ./merging-flux -d toroidal
$ python plot-toroidal.py
Run all cases, then the python script "makeplots.py"
$ make
$ mpirun -np 8 ./merging-flux -d single
$ mpirun -np 8 ./merging-flux -d single-no-resist
$ mpirun -np 8 ./merging-flux -d merging
$ mpirun -np 8 ./merging-flux -d merging-no-resist
$ python makeplots.py
This should produce a number of PDF figures