-
Notifications
You must be signed in to change notification settings - Fork 106
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
36adb40
commit f9652de
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import sys | ||
sys.path.append('./') | ||
from collections import defaultdict | ||
from functools import partial | ||
import math | ||
import operator | ||
import os | ||
import pprint | ||
from statistics import mean, median | ||
import jax | ||
import jax.numpy as jnp | ||
import pandas as pd | ||
import scipy | ||
from typing import Callable, Union | ||
from chex import PRNGKey | ||
import jax | ||
import jax.numpy as jnp | ||
import blackjax | ||
from blackjax.adaptation.mclmc_adaptation import MCLMCAdaptationState | ||
# from blackjax.adaptation.window_adaptation import da_adaptation | ||
from blackjax.mcmc.integrators import generate_euclidean_integrator, generate_isokinetic_integrator, mclachlan, yoshida, velocity_verlet, omelyan, isokinetic_mclachlan, isokinetic_velocity_verlet, isokinetic_yoshida, isokinetic_omelyan | ||
from blackjax.util import run_inference_algorithm | ||
import blackjax | ||
from blackjax.util import pytree_size | ||
|
||
class StandardNormal(): | ||
"""Standard Normal distribution in d dimensions""" | ||
|
||
def __init__(self, d): | ||
self.ndims = d | ||
self.E_x2 = jnp.ones(d) | ||
self.Var_x2 = 2 * self.E_x2 | ||
self.name = 'StandardNormal' | ||
|
||
|
||
def logdensity_fn(self, x): | ||
"""- log p of the target distribution""" | ||
return -0.5 * jnp.sum(jnp.square(x), axis= -1) | ||
|
||
|
||
def transform(self, x): | ||
return x | ||
|
||
def sample_init(self, key): | ||
return jax.random.normal(key, shape = (self.ndims, )) | ||
|
||
|
||
|
||
def run_mclmc(logdensity_fn, num_steps, initial_position, transform, key, preconditioning): | ||
|
||
integrator = isokinetic_mclachlan | ||
init_key, tune_key, run_key = jax.random.split(key, 3) | ||
|
||
|
||
initial_state = blackjax.mcmc.mclmc.init( | ||
position=initial_position, logdensity_fn=logdensity_fn, rng_key=init_key | ||
) | ||
|
||
|
||
kernel = lambda sqrt_diag_cov : blackjax.mcmc.mclmc.build_kernel( | ||
logdensity_fn=logdensity_fn, | ||
integrator=integrator, | ||
sqrt_diag_cov=sqrt_diag_cov, | ||
) | ||
|
||
( | ||
blackjax_state_after_tuning, | ||
blackjax_mclmc_sampler_params, | ||
) = blackjax.mclmc_find_L_and_step_size( | ||
mclmc_kernel=kernel, | ||
num_steps=num_steps, | ||
state=initial_state, | ||
rng_key=tune_key, | ||
diagonal_preconditioning=preconditioning, | ||
) | ||
|
||
# sampling_alg = blackjax.mclmc( | ||
# logdensity_fn, | ||
# L=blackjax_mclmc_sampler_params.L, | ||
# step_size=blackjax_mclmc_sampler_params.step_size, | ||
# sqrt_diag_cov=blackjax_mclmc_sampler_params.sqrt_diag_cov, | ||
# integrator = integrator, | ||
# ) | ||
|
||
|
||
# _, samples, _ = run_inference_algorithm( | ||
# rng_key=run_key, | ||
# initial_state=blackjax_state_after_tuning, | ||
# inference_algorithm=sampling_alg, | ||
# num_steps=num_steps, | ||
# transform=lambda x: transform(x.position), | ||
# progress_bar=False, | ||
# ) | ||
|
||
|
||
# return samples.mean(axis=0) | ||
|
||
return blackjax_state_after_tuning.position | ||
|
||
|
||
model = StandardNormal(2) | ||
|
||
key = jax.random.PRNGKey(0) | ||
|
||
|
||
map = jax.pmap # change to pmap | ||
|
||
sampler = partial(run_mclmc, preconditioning=True) | ||
|
||
key1, init_key = jax.random.split(key, 2) | ||
keys = jax.random.split(key1, 1) | ||
|
||
init_keys = jax.random.split(init_key, 1) | ||
init_pos = map(model.sample_init)(init_keys) # [batch_size, dim_model] | ||
|
||
result = map(lambda pos, key: sampler(logdensity_fn=model.logdensity_fn, num_steps=1000, initial_position= pos,transform= model.transform, key=key))(init_pos, keys) | ||
|
||
print(f'Result with {str(map)} is {result}') |