-
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Documenter.jl
committed
Jun 23, 2023
1 parent
337ed3c
commit da3f7bb
Showing
16 changed files
with
16,246 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
v0.7.2 | ||
v0.8.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
v0.8.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
<!DOCTYPE html> | ||
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>API · PSIS.jl</title><script data-outdated-warner src="../assets/warner.js"></script><link href="https://cdnjs.cloudflare.com/ajax/libs/lato-font/3.0.0/css/lato-font.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/juliamono/0.045/juliamono.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.24/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-dark.css" data-theme-name="documenter-dark" data-theme-primary-dark/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><div class="docs-package-name"><span class="docs-autofit"><a href="../">PSIS.jl</a></span></div><form class="docs-search" action="../search/"><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="../">Home</a></li><li><a class="tocitem" href="../plotting/">Plotting</a></li><li class="is-active"><a class="tocitem" href>API</a><ul class="internal"><li><a class="tocitem" href="#Core-functionality"><span>Core functionality</span></a></li><li><a class="tocitem" href="#Plotting"><span>Plotting</span></a></li></ul></li><li><a class="tocitem" href="../internal/">Internal</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li class="is-active"><a href>API</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>API</a></li></ul></nav><div class="docs-right"><a class="docs-edit-link" href="https://github.com/arviz-devs/PSIS.jl/blob/main/docs/src/api.md#" title="Edit on GitHub"><span class="docs-icon fab"></span><span class="docs-label is-hidden-touch">Edit on GitHub</span></a><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article class="content" id="documenter-page"><h1 id="API"><a class="docs-heading-anchor" href="#API">API</a><a id="API-1"></a><a class="docs-heading-anchor-permalink" href="#API" title="Permalink"></a></h1><h2 id="Core-functionality"><a class="docs-heading-anchor" href="#Core-functionality">Core functionality</a><a id="Core-functionality-1"></a><a class="docs-heading-anchor-permalink" href="#Core-functionality" title="Permalink"></a></h2><article class="docstring"><header><a class="docstring-binding" id="PSIS.PSISResult" href="#PSIS.PSISResult"><code>PSIS.PSISResult</code></a> — <span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia hljs">PSISResult</code></pre><p>Result of Pareto-smoothed importance sampling (PSIS) using <a href="#PSIS.psis"><code>psis</code></a>.</p><p><strong>Properties</strong></p><ul><li><code>log_weights</code>: un-normalized Pareto-smoothed log weights</li><li><code>weights</code>: normalized Pareto-smoothed weights (allocates a copy)</li><li><code>pareto_shape</code>: Pareto <span>$k=ξ$</span> shape parameter</li><li><code>nparams</code>: number of parameters in <code>log_weights</code></li><li><code>ndraws</code>: number of draws in <code>log_weights</code></li><li><code>nchains</code>: number of chains in <code>log_weights</code></li><li><code>reff</code>: the ratio of the effective sample size of the unsmoothed importance ratios and the actual sample size.</li><li><code>ess</code>: estimated effective sample size of estimate of mean using smoothed importance samples (see <a href="#PSIS.ess_is"><code>ess_is</code></a>)</li><li><code>tail_length</code>: length of the upper tail of <code>log_weights</code> that was smoothed</li><li><code>tail_dist</code>: the generalized Pareto distribution that was fit to the tail of <code>log_weights</code>. Note that the tail weights are scaled to have a maximum of 1, so <code>tail_dist * exp(maximum(log_ratios))</code> is the corresponding fit directly to the tail of <code>log_ratios</code>.</li><li><code>normalized::Bool</code>:indicates whether <code>log_weights</code> are log-normalized along the sample dimensions.</li></ul><p><strong>Diagnostic</strong></p><p>The <code>pareto_shape</code> parameter <span>$k=ξ$</span> of the generalized Pareto distribution <code>tail_dist</code> can be used to diagnose reliability and convergence of estimates using the importance weights <sup class="footnote-reference"><a id="citeref-VehtariSimpson2021" href="#footnote-VehtariSimpson2021">[VehtariSimpson2021]</a></sup>.</p><ul><li>if <span>$k < \frac{1}{3}$</span>, importance sampling is stable, and importance sampling (IS) and PSIS both are reliable.</li><li>if <span>$k ≤ \frac{1}{2}$</span>, then the importance ratio distributon has finite variance, and the central limit theorem holds. As <span>$k$</span> approaches the upper bound, IS becomes less reliable, while PSIS still works well but with a higher RMSE.</li><li>if <span>$\frac{1}{2} < k ≤ 0.7$</span>, then the variance is infinite, and IS can behave quite poorly. However, PSIS works well in this regime.</li><li>if <span>$0.7 < k ≤ 1$</span>, then it quickly becomes impractical to collect enough importance weights to reliably compute estimates, and importance sampling is not recommended.</li><li>if <span>$k > 1$</span>, then neither the variance nor the mean of the raw importance ratios exists. The convergence rate is close to zero, and bias can be large with practical sample sizes.</li></ul><p>See <a href="#PSIS.PSISPlots.paretoshapeplot"><code>PSISPlots.paretoshapeplot</code></a> for a diagnostic plot.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/arviz-devs/PSIS.jl/blob/e07c7150dafbad360202c2e07fc3ea0d862b8500/src/core.jl#L12-L61">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="PSIS.psis" href="#PSIS.psis"><code>PSIS.psis</code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia hljs">psis(log_ratios, reff = 1.0; kwargs...) -> PSISResult | ||
psis!(log_ratios, reff = 1.0; kwargs...) -> PSISResult</code></pre><p>Compute Pareto smoothed importance sampling (PSIS) log weights <sup class="footnote-reference"><a id="citeref-VehtariSimpson2021" href="#footnote-VehtariSimpson2021">[VehtariSimpson2021]</a></sup>.</p><p>While <code>psis</code> computes smoothed log weights out-of-place, <code>psis!</code> smooths them in-place.</p><p><strong>Arguments</strong></p><ul><li><code>log_ratios</code>: an array of logarithms of importance ratios, with size <code>(draws, [chains, [parameters...]])</code>, where <code>chains>1</code> would be used when chains are generated using Markov chain Monte Carlo.</li><li><code>reff::Union{Real,AbstractArray}</code>: the ratio(s) of effective sample size of <code>log_ratios</code> and the actual sample size <code>reff = ess/(draws * chains)</code>, used to account for autocorrelation, e.g. due to Markov chain Monte Carlo. If an array, it must have the size <code>(parameters...,)</code> to match <code>log_ratios</code>.</li></ul><p><strong>Keywords</strong></p><ul><li><code>warn=true</code>: If <code>true</code>, warning messages are delivered</li><li><code>normalize=true</code>: If <code>true</code>, the log-weights will be log-normalized so that <code>exp.(log_weights)</code> sums to 1 along the sample dimensions.</li></ul><p><strong>Returns</strong></p><ul><li><code>result</code>: a <a href="#PSIS.PSISResult"><code>PSISResult</code></a> object containing the results of the Pareto-smoothing.</li></ul><p>A warning is raised if the Pareto shape parameter <span>$k ≥ 0.7$</span>. See <a href="#PSIS.PSISResult"><code>PSISResult</code></a> for details and <a href="#PSIS.PSISPlots.paretoshapeplot"><code>PSISPlots.paretoshapeplot</code></a> for a diagnostic plot.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/arviz-devs/PSIS.jl/blob/e07c7150dafbad360202c2e07fc3ea0d862b8500/src/core.jl#L176-L210">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="PSIS.ess_is" href="#PSIS.ess_is"><code>PSIS.ess_is</code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia hljs">ess_is(weights; reff=1)</code></pre><p>Estimate effective sample size (ESS) for importance sampling over the sample dimensions.</p><p>Given normalized weights <span>$w_{1:n}$</span>, the ESS is estimated using the L2-norm of the weights:</p><p class="math-container">\[\mathrm{ESS}(w_{1:n}) = \frac{r_{\mathrm{eff}}}{\sum_{i=1}^n w_i^2}\]</p><p>where <span>$r_{\mathrm{eff}}$</span> is the relative efficiency of the <code>log_weights</code>.</p><pre><code class="nohighlight hljs">ess_is(result::PSISResult; bad_shape_missing=true)</code></pre><p>Estimate ESS for Pareto-smoothed importance sampling.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>ESS estimates for Pareto shape values <span>$k > 0.7$</span>, which are unreliable and misleadingly high, are set to <code>missing</code>. To avoid this, set <code>bad_shape_missing=false</code>.</p></div></div></div><a class="docs-sourcelink" target="_blank" href="https://github.com/arviz-devs/PSIS.jl/blob/e07c7150dafbad360202c2e07fc3ea0d862b8500/src/ess.jl#L1-L22">source</a></section></article><h2 id="Plotting"><a class="docs-heading-anchor" href="#Plotting">Plotting</a><a id="Plotting-1"></a><a class="docs-heading-anchor-permalink" href="#Plotting" title="Permalink"></a></h2><article class="docstring"><header><a class="docstring-binding" id="PSIS.PSISPlots" href="#PSIS.PSISPlots"><code>PSIS.PSISPlots</code></a> — <span class="docstring-category">Module</span></header><section><div><p>A module defining <a href="#PSIS.PSISPlots.paretoshapeplot"><code>paretoshapeplot</code></a> for plotting Pareto shape values with Plots.jl</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/arviz-devs/PSIS.jl/blob/e07c7150dafbad360202c2e07fc3ea0d862b8500/src/recipes/plots.jl#L3-L5">source</a></section></article><article class="docstring"><header><a class="docstring-binding" id="PSIS.PSISPlots.paretoshapeplot" href="#PSIS.PSISPlots.paretoshapeplot"><code>PSIS.PSISPlots.paretoshapeplot</code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia hljs">paretoshapeplot(values; showlines=false, ...) | ||
paretoshapeplot!(values; showlines=false, kwargs...)</code></pre><p>Plot shape parameters of fitted Pareto tail distributions for diagnosing convergence.</p><p><code>values</code> may be either a vector of Pareto shape parameters or a <a href="#PSIS.PSISResult"><code>PSIS.PSISResult</code></a>.</p><p>If <code>showlines==true</code>, horizontal lines indicating relevant Pareto shape thresholds are drawn. See <a href="#PSIS.PSISResult"><code>PSIS.PSISResult</code></a> for an explanation of the thresholds.</p><p>All remaining <code>kwargs</code> are forwarded to the plotting function.</p><p>See <a href="#PSIS.psis"><code>psis</code></a>, <a href="#PSIS.PSISResult"><code>PSISResult</code></a>.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">using PSIS, Distributions, Plots | ||
proposal = Normal() | ||
target = TDist(7) | ||
x = rand(proposal, 1_000, 100) | ||
log_ratios = logpdf.(target, x) .- logpdf.(proposal, x) | ||
result = psis(log_ratios) | ||
paretoshapeplot(result)</code></pre><p>We can also plot the Pareto shape parameters directly:</p><pre><code class="language-julia hljs">paretoshapeplot(result.pareto_shape)</code></pre><p>We can also use <code>plot</code> directly:</p><pre><code class="language-julia hljs">plot(result.pareto_shape; showlines=true)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/arviz-devs/PSIS.jl/blob/e07c7150dafbad360202c2e07fc3ea0d862b8500/src/recipes/plots.jl#L11-L49">source</a></section></article><section class="footnotes is-size-7"><ul><li class="footnote" id="footnote-VehtariSimpson2021"><a class="tag is-link" href="#citeref-VehtariSimpson2021">VehtariSimpson2021</a>Vehtari A, Simpson D, Gelman A, Yao Y, Gabry J. (2021). Pareto smoothed importance sampling. <a href="https://arxiv.org/abs/1507.02646v7">arXiv:1507.02646v7</a> [stat.CO]</li><li class="footnote" id="footnote-VehtariSimpson2021"><a class="tag is-link" href="#citeref-VehtariSimpson2021">VehtariSimpson2021</a>Vehtari A, Simpson D, Gelman A, Yao Y, Gabry J. (2021). Pareto smoothed importance sampling. <a href="https://arxiv.org/abs/1507.02646v7">arXiv:1507.02646v7</a> [stat.CO]</li></ul></section></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../plotting/">« Plotting</a><a class="docs-footer-nextpage" href="../internal/">Internal »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 0.27.24 on <span class="colophon-date" title="Friday 23 June 2023 23:14">Friday 23 June 2023</span>. Using Julia version 1.9.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html> |
Oops, something went wrong.