-
Notifications
You must be signed in to change notification settings - Fork 249
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implemented add, mult, inv, sub, div, pow and neg for binary fields a…
…nd wrote tests for each function
- Loading branch information
1 parent
e107556
commit 6d629df
Showing
1 changed file
with
153 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
use num_bigint::BigUint; | ||
use num_traits::{Zero, One}; | ||
|
||
#[derive( Clone, PartialEq, Eq)] | ||
pub struct BinaryFieldElement { | ||
value: BigUint, | ||
} | ||
|
||
impl BinaryFieldElement { | ||
// Constructor to create a new BinaryFieldElement | ||
pub fn new(value: BigUint) -> Self { | ||
BinaryFieldElement { value } | ||
} | ||
|
||
// Method for addition in GF(2^k) | ||
pub fn add(&self, other: &Self) -> Self { | ||
// Addition in binary fields is done with XOR | ||
BinaryFieldElement::new(&self.value ^ &other.value) | ||
} | ||
|
||
pub fn sub(&self, other: &Self) -> Self { | ||
self.add(other) | ||
} | ||
|
||
// Method for multiplication in GF(2^k) | ||
pub fn mul(&self, other: &Self) -> Self { | ||
BinaryFieldElement::new(binmul(self.value.clone(), other.value.clone(), None)) | ||
} | ||
|
||
// Method for division (multiplication by the inverse) | ||
pub fn div(&self, other: &Self) -> Self { | ||
self.mul(&other.inv()) // Division as multiplication by inverse | ||
} | ||
|
||
pub fn neg(&self) -> Self { | ||
self.clone() | ||
} | ||
|
||
pub fn pow(&self, exponent: u64) -> Self { | ||
if exponent == 0 { | ||
BinaryFieldElement::new(BigUint::one()) | ||
} else if exponent == 1 { | ||
self.clone() | ||
} else if exponent % 2 == 0 { | ||
let half_pow = self.pow(exponent / 2); | ||
half_pow.mul(&half_pow) | ||
} else { | ||
self.mul(&self.pow(exponent - 1)) | ||
} | ||
} | ||
|
||
// In a binary field GF(2^w) the inverse is a^{-1} = a^{2m-2} | ||
pub fn inv(&self) -> Self { | ||
let bit_len = self.value.bits(); | ||
let l = 1 << (bit_len - 1).ilog2() + 1; | ||
return self.pow(2_u64.pow(l) - 2); | ||
} | ||
} | ||
|
||
// Binary field multiplication with reduction | ||
fn binmul(v1: BigUint, v2: BigUint, length: Option<usize>) -> BigUint { | ||
if v1.is_zero() || v2.is_zero() { | ||
return BigUint::zero(); | ||
} | ||
if v1.is_one() || v2.is_one() { | ||
return v1 * v2; | ||
} | ||
|
||
let length = length.unwrap_or_else(|| 1 << (v1.bits().max(v2.bits()) - 1).next_power_of_two()); | ||
let halflen = length / 2; | ||
let quarterlen = halflen / 2; | ||
let halfmask = (BigUint::one() << halflen) - BigUint::one(); | ||
|
||
let l1 = &v1 & &halfmask; | ||
let r1 = &v1 >> halflen; | ||
let l2 = &v2 & &halfmask; | ||
let r2 = &v2 >> halflen; | ||
|
||
// Optimized case for (L1, R1) == (0, 1) | ||
if l1.is_zero() && r1 == BigUint::one() { | ||
let out_r = binmul(BigUint::one() << quarterlen, r2.clone(), Some(halflen)) ^ l2.clone(); | ||
return r2 ^ (out_r << halflen); | ||
} | ||
|
||
// Perform Karatsuba multiplication with three main sub-multiplications | ||
let l1l2 = binmul(l1.clone(), l2.clone(), Some(halflen)); | ||
let r1r2 = binmul(r1.clone(), r2.clone(), Some(halflen)); | ||
let r1r2_high = binmul(BigUint::one() << quarterlen, r1r2.clone(), Some(halflen)); | ||
let z3 = binmul(l1 ^ r1.clone(), l2 ^ r2.clone(), Some(halflen)); | ||
|
||
l1l2.clone() ^ r1r2.clone() ^ ((z3 ^ l1l2 ^ r1r2 ^ r1r2_high) << halflen) | ||
} | ||
|
||
|
||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use num_bigint::ToBigUint; | ||
|
||
#[test] | ||
fn add_test() { | ||
let a = BinaryFieldElement::new(1u64.to_biguint().unwrap()); | ||
let b = BinaryFieldElement::new(0u64.to_biguint().unwrap()); | ||
let c = BinaryFieldElement::new(100u64.to_biguint().unwrap()); | ||
|
||
// Test cases | ||
assert_eq!(a.add(&b), BinaryFieldElement::new(1u64.to_biguint().unwrap())); | ||
assert_eq!(a.add(&a), BinaryFieldElement::new(0u64.to_biguint().unwrap())); // 1 + 1 in GF(2) should be 0 | ||
assert_eq!(a.add(&c), BinaryFieldElement::new(101u64.to_biguint().unwrap())); // 1 + 100 = 101 in binary (XOR) | ||
assert_eq!(b.add(&c), BinaryFieldElement::new(100u64.to_biguint().unwrap())); // 0 + 100 = 100 | ||
} | ||
|
||
#[test] | ||
fn sub_test() { | ||
let a = BinaryFieldElement::new(1u64.to_biguint().unwrap()); | ||
let b = BinaryFieldElement::new(100u64.to_biguint().unwrap()); | ||
|
||
assert_eq!(a.sub(&b), BinaryFieldElement::new(101u64.to_biguint().unwrap())); // 1 - 100 in GF(2) should be 101 (same as add) | ||
} | ||
|
||
#[test] | ||
fn neg_test() { | ||
let a = BinaryFieldElement::new(15u64.to_biguint().unwrap()); | ||
assert_eq!(a.neg(), a); // Negation in GF(2) has no effect, so a == -a | ||
} | ||
|
||
#[test] | ||
fn multiplication_test() { | ||
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap()); | ||
let b = BinaryFieldElement::new(13u64.to_biguint().unwrap()); | ||
assert_eq!(a.mul(&b), BinaryFieldElement::new(8u64.to_biguint().unwrap())); // 7 * 13 = 8 | ||
} | ||
|
||
#[test] | ||
fn exponentiation_test() { | ||
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap()); | ||
assert_eq!(a.pow(3), BinaryFieldElement::new(4u64.to_biguint().unwrap())); // 7 ** 3 = 4 | ||
} | ||
|
||
#[test] | ||
fn inverse_test() { | ||
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap()); | ||
assert_eq!(a.inv(), BinaryFieldElement::new(15u64.to_biguint().unwrap())); // Inverse of 7 = 15 | ||
} | ||
|
||
#[test] | ||
fn division_test() { | ||
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap()); | ||
let b = BinaryFieldElement::new(13u64.to_biguint().unwrap()); | ||
assert_eq!(a.div(&b), BinaryFieldElement::new(10u64.to_biguint().unwrap())); // 7 / 13 = 10 | ||
} | ||
} |