Repo for the paper "Scalable covariance based connectivity inference for synchronous neuronal networks".
Biorxiv preprint: https://www.biorxiv.org/content/10.1101/2023.06.17.545399v1
pip install -r requirements.txt
├── coninf
│ ├── coninf.ipynb # python notebook file for running multivariate inference methods
│ ├── matlab # all matlab scripts for running pairwise inference (CCG)
│ └── python # all python scripts for the multivariate inference methods
├── example_data # default output location of simulations
│ └── 2000
├── LICENSE
├── README.md
├── requirements.txt
├── simulation
│ ├── adex_model_script_noise.py # the script for running noise-perturbed simulations
│ └── adex_model_script.py # main script for running simulations
└── util
├── __pycache__
└── util.py # utility functions
example command:
python -u adex_model_script.py --sim_time 1200 --N 2000 --a 13 --b 24 --instance 0
- sim_time : simulation length in seconds (s)
- N : number of neurons to be simulated (at the moment, excitatory - inhibitory ratio is fixed. 80% vs 20%)
- a : adaptation parameter (nS)
- b : adaptation parameter (pA)
- instance : integer alias of the simulation in case we want to replicate multiple simulations with the same parameter set.
- make sure to set 'root_dir' variable in the script correctly before running simulations.
For simulations with noise
python -u adex_model_script_noise.py --sim_time --1200 --N 2000 --a 13 --b 24 --instance 0 --noise 0.05
- noise : noise in nA
- make sure to run simulations w/o noise first (please set the same 'root_dir' for both simulation scripts), as the noised simulation uses the same connections and synaptic delays of the non-noised simulation.
Please check the notebook file ("coninf/coninf.ipynb") and the readme file inside the 'coninf/matlab' folder.