-
Notifications
You must be signed in to change notification settings - Fork 434
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Core][VL] Add random parquet data generator and ShuffleWriterFuzzerT…
…est (#3584)
- Loading branch information
Showing
5 changed files
with
368 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
29 changes: 29 additions & 0 deletions
29
backends-velox/src/test/java/io/glutenproject/tags/FuzzerTest.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package io.glutenproject.tags; | ||
|
||
import org.scalatest.TagAnnotation; | ||
|
||
import java.lang.annotation.ElementType; | ||
import java.lang.annotation.Retention; | ||
import java.lang.annotation.RetentionPolicy; | ||
import java.lang.annotation.Target; | ||
|
||
@TagAnnotation | ||
@Retention(RetentionPolicy.RUNTIME) | ||
@Target({ElementType.METHOD, ElementType.TYPE}) | ||
public @interface FuzzerTest {} |
144 changes: 144 additions & 0 deletions
144
backends-velox/src/test/scala/io/glutenproject/benchmarks/ShuffleWriterFuzzerTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package io.glutenproject.benchmarks | ||
|
||
import io.glutenproject.benchmarks.ShuffleWriterFuzzerTest.{Failed, OOM, Successful, TestResult} | ||
import io.glutenproject.execution.VeloxWholeStageTransformerSuite | ||
import io.glutenproject.memory.memtarget.ThrowOnOomMemoryTarget | ||
import io.glutenproject.tags.{FuzzerTest, SkipTestTags} | ||
|
||
import org.apache.spark.SparkConf | ||
|
||
object ShuffleWriterFuzzerTest { | ||
trait TestResult { | ||
val seed: Long | ||
|
||
def getSeed: Long = seed | ||
} | ||
case class Successful(seed: Long) extends TestResult | ||
case class Failed(seed: Long) extends TestResult | ||
case class OOM(seed: Long) extends TestResult | ||
} | ||
|
||
@FuzzerTest | ||
@SkipTestTags | ||
class ShuffleWriterFuzzerTest extends VeloxWholeStageTransformerSuite { | ||
override protected val backend: String = "velox" | ||
override protected val resourcePath: String = "/tpch-data-parquet-velox" | ||
override protected val fileFormat: String = "parquet" | ||
|
||
private val dataGenerator = RandomParquetDataGenerator(System.currentTimeMillis()) | ||
private val outputPath = getClass.getResource("/").getPath + "fuzzer_output.parquet" | ||
|
||
private val REPARTITION_SQL = (numPartitions: Int) => | ||
s"select /*+ REPARTITION($numPartitions) */ * from tbl" | ||
private val AGG_REPARTITION_SQL = | ||
"""select count(*) as cnt, f_1, f_2, f_3, f_4, f_5, f_6 | ||
|from tbl group by f_1, f_2, f_3, f_4, f_5, f_6 | ||
|order by cnt, f_1, f_2, f_3, f_4, f_5, f_6""".stripMargin | ||
|
||
override protected def sparkConf: SparkConf = { | ||
super.sparkConf | ||
.set("spark.plugins", "io.glutenproject.GlutenPlugin") | ||
.set("spark.shuffle.manager", "org.apache.spark.shuffle.sort.ColumnarShuffleManager") | ||
.set("spark.memory.offHeap.enabled", "true") | ||
.set("spark.memory.offHeap.size", "512MB") | ||
.set("spark.driver.memory", "4g") | ||
.set("spark.driver.maxResultSize", "4g") | ||
.set("spark.gluten.sql.debug", "true") | ||
.set("spark.gluten.sql.columnar.backend.velox.glogSeverityLevel", "0") | ||
} | ||
|
||
def getRootCause(e: Throwable): Throwable = { | ||
if (e.getCause == null) { | ||
return e | ||
} | ||
getRootCause(e.getCause) | ||
} | ||
|
||
def executeQuery(sql: String): TestResult = { | ||
try { | ||
System.gc() | ||
dataGenerator.generateRandomData(spark, outputPath) | ||
spark.read.format("parquet").load(outputPath).createOrReplaceTempView("tbl") | ||
runQueryAndCompare(sql, true, false)(_ => {}) | ||
Successful(dataGenerator.getSeed) | ||
} catch { | ||
case oom: ThrowOnOomMemoryTarget.OutOfMemoryException => | ||
logError(s"Out of memory while running test with seed: ${dataGenerator.getSeed}", oom) | ||
OOM(dataGenerator.getSeed) | ||
case t: Throwable => | ||
if ( | ||
getRootCause(t).getMessage.contains( | ||
classOf[ThrowOnOomMemoryTarget.OutOfMemoryException].getName) | ||
) { | ||
logError(s"Out of memory while running test with seed: ${dataGenerator.getSeed}", t) | ||
OOM(dataGenerator.getSeed) | ||
} else { | ||
logError(s"Failed to run test with seed: ${dataGenerator.getSeed}", t) | ||
Failed(dataGenerator.getSeed) | ||
} | ||
} | ||
} | ||
|
||
def repeatQuery(sql: String, iterations: Int, testName: String): Unit = { | ||
val result = (0 until iterations) | ||
.map { | ||
i => | ||
logWarning( | ||
s"==============================> " + | ||
s"Started iteration $i (seed: ${dataGenerator.getSeed})") | ||
val result = executeQuery(sql) | ||
dataGenerator.reFake(System.currentTimeMillis()) | ||
result | ||
} | ||
val oom = result.filter(_.isInstanceOf[OOM]).map(_.getSeed) | ||
if (oom.nonEmpty) { | ||
logError(s"Out of memory while running test '$testName' with seed: ${oom.mkString(", ")}") | ||
} | ||
val failed = result.filter(_.isInstanceOf[Failed]).map(_.getSeed) | ||
assert(failed.isEmpty, s"Failed to run test '$testName' with seed: ${failed.mkString(",")}") | ||
} | ||
|
||
private val REPARTITION_TEST_NAME = (numPartitions: Int) => s"repartition - $numPartitions" | ||
for (numPartitions <- Seq(1, 3, 10, 100, 1000, 4000, 8000)) { | ||
val testName = REPARTITION_TEST_NAME(numPartitions) | ||
test(testName) { | ||
repeatQuery(REPARTITION_SQL(numPartitions), 10, testName) | ||
} | ||
} | ||
|
||
private val AGG_TEST_NAME = "with aggregation" | ||
ignore(AGG_TEST_NAME) { | ||
repeatQuery(AGG_REPARTITION_SQL, 10, AGG_TEST_NAME) | ||
} | ||
|
||
ignore("reproduce") { | ||
// Replace sql with the actual failed sql. | ||
val sql = REPARTITION_SQL(100) | ||
// Replace seed '0L' with the actual failed seed. | ||
Seq(0L).foreach { | ||
seed => | ||
dataGenerator.reFake(seed) | ||
logWarning( | ||
s"==============================> " + | ||
s"Started reproduction (seed: ${dataGenerator.getSeed})") | ||
val result = executeQuery(sql) | ||
assert(result.isInstanceOf[Successful], s"Failed to run 'reproduce' with seed: $seed") | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
181 changes: 181 additions & 0 deletions
181
gluten-core/src/test/scala/io/glutenproject/benchmarks/RandomParquetDataGenerator.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package io.glutenproject.benchmarks | ||
|
||
import org.apache.spark.sql.{Row, SparkSession} | ||
import org.apache.spark.sql.types._ | ||
|
||
import com.github.javafaker.Faker | ||
|
||
import java.sql.Date | ||
import java.util.Random | ||
|
||
case class RandomParquetDataGenerator(initialSeed: Long = 0L) { | ||
private var seed: Long = initialSeed | ||
private var faker = new Faker(new Random(seed)) | ||
|
||
def reFake(newSeed: Long): Unit = { | ||
seed = newSeed | ||
faker = new Faker(new Random(seed)) | ||
} | ||
|
||
def getSeed: Long = { | ||
seed | ||
} | ||
|
||
def getFaker: Faker = { | ||
faker | ||
} | ||
|
||
def generateRow(schema: StructType, probabilityOfNull: Double = 0): Row = { | ||
val values = schema.fields.map(field => generateDataForType(field.dataType, probabilityOfNull)) | ||
Row.fromSeq(values) | ||
} | ||
|
||
def generateDataForType(dataType: DataType, probabilityOfNull: Double): Any = { | ||
require( | ||
probabilityOfNull >= 0 && probabilityOfNull <= 1, | ||
"Probability should be between 0 and 1") | ||
|
||
if (faker.random().nextDouble() < probabilityOfNull) { | ||
return null | ||
} | ||
|
||
dataType match { | ||
case BooleanType => faker.bool().bool() | ||
case ByteType => faker.number().numberBetween(Byte.MinValue, Byte.MaxValue).toByte | ||
case ShortType => faker.number().numberBetween(Short.MinValue, Short.MaxValue).toShort | ||
case IntegerType => faker.number().numberBetween(Int.MinValue, Int.MaxValue) | ||
case LongType => faker.number().numberBetween(Long.MinValue, Long.MaxValue) | ||
case FloatType => | ||
faker.number().randomDouble(2, Float.MinValue.toInt, Float.MaxValue.toInt).toFloat | ||
case DoubleType => | ||
faker.number().randomDouble(2, Double.MinValue.toLong, Double.MaxValue.toLong) | ||
case DateType => new Date(faker.date().birthday().getTime) | ||
// case TimestampType => new Timestamp(faker.date().birthday().getTime) | ||
case t: DecimalType => | ||
BigDecimal( | ||
faker.number().randomDouble(t.scale, 0, Math.pow(10, t.precision - t.scale).toLong)) | ||
case StringType => faker.lorem().characters(0, 1000) | ||
case BinaryType => faker.lorem().characters(10).getBytes | ||
case ArrayType(elementType, _) => | ||
Seq.fill(faker.number().numberBetween(1, 5))( | ||
generateDataForType(elementType, probabilityOfNull)) | ||
case MapType(keyType, valueType, _) => | ||
Map(generateDataForType(keyType, 0) -> generateDataForType(valueType, probabilityOfNull)) | ||
case struct: StructType => generateRow(struct) | ||
case _ => | ||
throw new UnsupportedOperationException( | ||
s"Data generation not supported for type: $dataType") | ||
} | ||
} | ||
|
||
def generateRandomData( | ||
spark: SparkSession, | ||
schema: StructType, | ||
numRows: Int, | ||
outputPath: String): Unit = { | ||
val data = (0 until numRows).map(_ => generateRow(schema, faker.random().nextDouble())) | ||
val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema) | ||
df.coalesce(1) | ||
.write | ||
.mode("overwrite") | ||
.parquet(outputPath) | ||
} | ||
|
||
def generateRandomData(spark: SparkSession, outputPath: String): Unit = { | ||
val schema = generateRandomSchema() | ||
val numRows = faker.random().nextInt(1000, 300000) | ||
generateRandomData(spark, schema, numRows, outputPath) | ||
} | ||
|
||
var fieldIndex = 0 | ||
def fieldName: String = { | ||
fieldIndex += 1 | ||
s"f_$fieldIndex" | ||
} | ||
|
||
// Candidate fields | ||
val numericFields: List[() => StructField] = List( | ||
() => StructField(fieldName, BooleanType, nullable = true), | ||
() => StructField(fieldName, ByteType, nullable = true), | ||
() => StructField(fieldName, ShortType, nullable = true), | ||
() => StructField(fieldName, IntegerType, nullable = true), | ||
() => StructField(fieldName, LongType, nullable = true), | ||
() => StructField(fieldName, FloatType, nullable = true), | ||
() => StructField(fieldName, DoubleType, nullable = true), | ||
() => StructField(fieldName, DateType, nullable = true), | ||
// () => StructField(fieldName, TimestampType, nullable = true), | ||
() => StructField(fieldName, DecimalType(10, 2), nullable = true) | ||
) | ||
|
||
val binaryFields: List[() => StructField] = List( | ||
() => StructField(fieldName, StringType, nullable = true), | ||
() => StructField(fieldName, BinaryType, nullable = true) | ||
) | ||
|
||
val complexFields: List[() => StructField] = List( | ||
() => StructField(fieldName, ArrayType(StringType, containsNull = true), nullable = true), | ||
() => | ||
StructField( | ||
fieldName, | ||
MapType(StringType, IntegerType, valueContainsNull = true), | ||
nullable = true), | ||
() => | ||
StructField( | ||
fieldName, | ||
StructType( | ||
Seq( | ||
StructField(fieldName, StringType, nullable = true), | ||
StructField(fieldName, DoubleType, nullable = true) | ||
)), | ||
nullable = true) | ||
) | ||
|
||
val candidateFields: List[() => StructField] = | ||
numericFields ++ binaryFields ++ complexFields | ||
|
||
// Function to generate random schema with n fields | ||
def generateRandomSchema(n: Int): StructType = { | ||
fieldIndex = 0 | ||
val selectedFields = { | ||
(0 until 3).map(_ => numericFields(faker.random().nextInt(numericFields.length))()) ++ | ||
(0 until 3).map(_ => binaryFields(faker.random().nextInt(binaryFields.length))()) ++ | ||
(0 until Math.max(0, n - 6)) | ||
.map(_ => candidateFields(faker.random().nextInt(candidateFields.length))()) | ||
} | ||
StructType(selectedFields) | ||
} | ||
|
||
// Generate random schema with [10, 30) fields | ||
def generateRandomSchema(): StructType = { | ||
generateRandomSchema(faker.random().nextInt(4, 24)) | ||
} | ||
} | ||
|
||
// An example to demonstrate how to use RandomParquetDataGenerator to generate input data. | ||
object RandomParquetDataGenerator { | ||
def main(args: Array[String]): Unit = { | ||
val spark = | ||
SparkSession.builder().master("local[1]").appName("Random Data Generator").getOrCreate() | ||
|
||
val seed: Long = 0L | ||
val outputPath = s"${seed}_output.parquet" | ||
|
||
RandomParquetDataGenerator(seed).generateRandomData(spark, outputPath) | ||
} | ||
} |