Skip to content

[CALCITE-6332] Optimization CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN... #12288

[CALCITE-6332] Optimization CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN...

[CALCITE-6332] Optimization CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN... #12288

Triggered via pull request April 1, 2024 22:31
Status Failure
Total duration 11m 1s
Artifacts

main.yml

on: pull_request
Windows (JDK 8)
7m 2s
Windows (JDK 8)
Windows (JDK 17)
5m 40s
Windows (JDK 17)
Linux (JDK 8), oldest Guava, America/New_York Timezone
4m 3s
Linux (JDK 8), oldest Guava, America/New_York Timezone
Linux (JDK 8), latest Guava, America/New_York Timezone
3m 43s
Linux (JDK 8), latest Guava, America/New_York Timezone
Linux (JDK 11), Pacific/Chatham Timezone
4m 6s
Linux (JDK 11), Pacific/Chatham Timezone
Linux (JDK 17)
3m 46s
Linux (JDK 17)
Linux (JDK 19)
3m 34s
Linux (JDK 19)
Linux (JDK 11), Avatica main
5m 6s
Linux (JDK 11), Avatica main
macOS (JDK 19)
3m 58s
macOS (JDK 19)
Error Prone (JDK 11), latest Guava
4m 29s
Error Prone (JDK 11), latest Guava
CheckerFramework (JDK 11)
10m 28s
CheckerFramework (JDK 11)
CheckerFramework (JDK 11), oldest Guava
10m 51s
CheckerFramework (JDK 11), oldest Guava
Linux (JDK 8) Slow Tests
0s
Linux (JDK 8) Slow Tests
Druid Tests
7m 12s
Druid Tests
Fit to window
Zoom out
Zoom in

Annotations

35 errors and 26 warnings
Linux (JDK 19): org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
1.9sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,398 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 19): task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 19)
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 8), latest Guava, America/New_York Timezone: org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
1.8sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,404 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 8), latest Guava, America/New_York Timezone: task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 8), latest Guava, America/New_York Timezone
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 17): org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
1.8sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,399 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 17): task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 17)
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
macOS (JDK 19): org.apache.calcite.test.BabelQuidemTest > test(String)[5%5D#L1
1.9sec org.apache.calcite.test.BabelQuidemTest > test(String)[5], [5] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /Users/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /Users/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,398 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9840:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9836:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9834:LogicalProject(subset=[rel#9835:RelSubset#1.NONE.[]], SAL=[$5]) > 9817:LogicalTableScan(subset=[rel#9833:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9840:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9832 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9831 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9817 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9833:RelSubset#0.NONE.[0], best=null > rel#9817:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9843:RelSubset#0.BINDABLE.[0], best=rel#9842 > rel#9842:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9845:RelSubset#0.ENUMERABLE.[0], best=rel#9844 > rel#9844:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9851:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9843), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9852:RelSubset#0.ENUMERABLE.[], best=rel#9844 > rel#9844:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9851:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9843), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9835:RelSubset#1.NONE.[], best=null > rel#9834:LogicalProject.NONE.[](input=RelSubset#9833,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9847:RelSubset#1.ENUMERABLE.[], best=rel#9846 > rel#9846:EnumerableProject.ENUMERABLE.[](input=RelSubset#9845,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9837:RelSubset#2.NONE.[], best=null > rel#9836:LogicalAggregate.NONE.[](input=RelSubset#9835,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9848:LogicalAggregate.NONE.[](input=RelSubset#9833,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9840:RelSubset#2.ENUMERABLE.[], best=null > rel#9841:AbstractConverter.ENUMERABLE.[](input=RelSubset#9837,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9817 [label="rel#9817:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9842 [label="rel#9842:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9844 [label="rel#9844:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9851 [label="rel#9851:EnumerableInterpreter\ninput=
macOS (JDK 19): task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///Users/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
macOS (JDK 19)
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///Users/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 8), oldest Guava, America/New_York Timezone: org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
1.9sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,404 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 8), oldest Guava, America/New_York Timezone: task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 8), oldest Guava, America/New_York Timezone
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 11), Pacific/Chatham Timezone: org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
2.0sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,399 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 11), Pacific/Chatham Timezone: task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 11), Pacific/Chatham Timezone
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 11), Avatica main: org.apache.calcite.test.BabelQuidemTest > test(String)[4%5D#L1
2.0sec org.apache.calcite.test.BabelQuidemTest > test(String)[4], [4] sql/redshift.iq org.opentest4j.AssertionFailedError: Files differ: /home/runner/work/calcite/calcite/babel/build/quidem/test/sql/redshift.iq /home/runner/work/calcite/calcite/babel/build/resources/test/sql/redshift.iq 212,213c212,399 < EXPR$0 < 12 --- > java.sql.SQLException: Error while executing SQL "select count(distinct sal) from emp": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. > Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] > There is 1 empty subset: rel#9318:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows > 9314:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) > 9312:LogicalProject(subset=[rel#9313:RelSubset#1.NONE.[]], SAL=[$5]) > 9295:LogicalTableScan(subset=[rel#9311:RelSubset#0.NONE.[0]], table=[[scott, EMP]]) > > Root: rel#9318:RelSubset#2.ENUMERABLE.[] > Original rel: > LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {29.125 rows, 29.0 cpu, 0.0 io}, id = 9310 > LogicalProject(SAL=[$5]): rowcount = 14.0, cumulative cost = {28.0 rows, 29.0 cpu, 0.0 io}, id = 9309 > LogicalTableScan(table=[[scott, EMP]]): rowcount = 14.0, cumulative cost = {14.0 rows, 15.0 cpu, 0.0 io}, id = 9295 > > Sets: > Set#0, type: RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO) > rel#9311:RelSubset#0.NONE.[0], best=null > rel#9295:LogicalTableScan.NONE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={inf} > rel#9321:RelSubset#0.BINDABLE.[0], best=rel#9320 > rel#9320:BindableTableScan.BINDABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9323:RelSubset#0.ENUMERABLE.[0], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > rel#9330:RelSubset#0.ENUMERABLE.[], best=rel#9322 > rel#9322:EnumerableTableScan.ENUMERABLE.[0](table=[scott, EMP]), rowcount=14.0, cumulative cost={14.0 rows, 15.0 cpu, 0.0 io} > rel#9329:EnumerableInterpreter.ENUMERABLE.[0](input=RelSubset#9321), rowcount=14.0, cumulative cost={21.0 rows, 22.0 cpu, 0.0 io} > Set#1, type: RecordType(DECIMAL(7, 2) SAL) > rel#9313:RelSubset#1.NONE.[], best=null > rel#9312:LogicalProject.NONE.[](input=RelSubset#9311,exprs=[$5]), rowcount=14.0, cumulative cost={inf} > rel#9325:RelSubset#1.ENUMERABLE.[], best=rel#9324 > rel#9324:EnumerableProject.ENUMERABLE.[](input=RelSubset#9323,exprs=[$5]), rowcount=14.0, cumulative cost={28.0 rows, 29.0 cpu, 0.0 io} > Set#2, type: RecordType(BIGINT EXPR$0) > rel#9315:RelSubset#2.NONE.[], best=null > rel#9314:LogicalAggregate.NONE.[](input=RelSubset#9313,group={},EXPR$0=COUNT(DISTINCT $0)), rowcount=1.0, cumulative cost={inf} > rel#9326:LogicalAggregate.NONE.[](input=RelSubset#9311,group={},EXPR$0=COUNT(DISTINCT $5)), rowcount=1.0, cumulative cost={inf} > rel#9318:RelSubset#2.ENUMERABLE.[], best=null > rel#9319:AbstractConverter.ENUMERABLE.[](input=RelSubset#9315,convention=ENUMERABLE,sort=[]), rowcount=1.0, cumulative cost={inf} > > Graphviz: > digraph G { > root [style=filled,label="Root"]; > subgraph cluster0{ > label="Set 0 RecordType(SMALLINT EMPNO, VARCHAR(10) ENAME, VARCHAR(9) JOB, SMALLINT MGR, DATE HIREDATE, DECIMAL(7, 2) SAL, DECIMAL(7, 2) COMM, TINYINT DEPTNO)"; > rel9295 [label="rel#9295:LogicalTableScan\ntable=[scott, EMP]\nrows=14.0, cost={inf}",shape=box] > rel9320 [label="rel#9320:BindableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9322 [label="rel#9322:EnumerableTableScan\ntable=[scott, EMP]\nrows=14.0, cost={14.0 rows, 15.0 cpu, 0.0 io}",color=blue,shape=box] > rel9329 [label="rel#9329:EnumerableInterpreter\ninput=Re
Linux (JDK 11), Avatica main: task ':babel:test'#L1
Execution failed for task ':babel:test': org.gradle.api.tasks.VerificationException: There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Linux (JDK 11), Avatica main
Execution failed for task ':babel:test'. > There were failing tests. See the report at: file:///home/runner/work/calcite/calcite/babel/build/reports/tests/test/index.html
Windows (JDK 17): task ':core:autostyleJavaCheck'#L1
Execution failed for task ':core:autostyleJavaCheck': See 'What went wrong' below
Windows (JDK 17)
Execution failed for task ':core:autostyleJavaCheck'. > The following files have format violations: core\src\test\java\org\apache\calcite\test\RelOptRulesTest.java @@ -1994,8 +1994,10 @@ * [CALCITE-6332] Optimization CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN * produces incorrect results for aggregates with groupSets</a>. */ @test void testIssue6332() { - final String sql = "select count(distinct deptno) as cd, count(*) as c\n" +\r\n - "from emp\n" +\r\n + final String sql = "select count(distinct deptno) as cd, count(*) as c\n"\r\n + +\r\n + "from emp\n"\r\n + +\r\n "group by cube(deptno)"; sql(sql) .withRule(CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN) Run './gradlew autostyleApply' to fix the violations.
Windows (JDK 8): task ':core:autostyleJavaCheck'#L1
Execution failed for task ':core:autostyleJavaCheck': See 'What went wrong' below
Windows (JDK 8)
Execution failed for task ':core:autostyleJavaCheck'. > The following files have format violations: core\src\test\java\org\apache\calcite\test\RelOptRulesTest.java @@ -1994,8 +1994,10 @@ * [CALCITE-6332] Optimization CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN * produces incorrect results for aggregates with groupSets</a>. */ @test void testIssue6332() { - final String sql = "select count(distinct deptno) as cd, count(*) as c\n" +\r\n - "from emp\n" +\r\n + final String sql = "select count(distinct deptno) as cd, count(*) as c\n"\r\n + +\r\n + "from emp\n"\r\n + +\r\n "group by cube(deptno)"; sql(sql) .withRule(CoreRules.AGGREGATE_EXPAND_DISTINCT_AGGREGATES_TO_JOIN) Run './gradlew autostyleApply' to fix the violations.
Druid Tests: DruidAdapter2IT.java#L2597
0.3sec org.apache.calcite.test.DruidAdapter2IT > testDistinctCountOnMetric() java.sql.SQLException: Error while executing SQL "select count(distinct "store_sales") from "foodmart" where "store_state" = 'WA'": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#73553:RelSubset#3.ENUMERABLE.[], the relevant part of the original plan is as follows 73548:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 73546:LogicalProject(subset=[rel#73547:RelSubset#2.NONE.[]], store_sales=[$90]) 73544:LogicalFilter(subset=[rel#73545:RelSubset#1.NONE.[]], condition=[=($63, 'WA')]) 73524:DruidQuery(subset=[rel#73543:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#73553:RelSubset#3.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 73542 LogicalProject(store_sales=[$90]): rowcount = 1.0, cumulative cost = {40.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 73541 LogicalFilter(condition=[=($63, 'WA')]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 73540 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 73524 Sets: Set#0, type: RecordType(TIMESTAMP(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#73543:RelSubset#0.BINDABLE.[], best=rel#73524 rel#73524:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#73557:RelSubset#0.ENUMERABLE.[], best=rel#73556 rel#73556:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#73543), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(TIMESTAMP(0) times
Druid Tests: DruidAdapter2IT.java#L2498
0.0sec org.apache.calcite.test.DruidAdapter2IT > testNotFilterForm() java.sql.SQLException: Error while executing SQL "select count(distinct "the_month") from "foodmart" where "the_month" <> 'October'": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#83085:RelSubset#3.ENUMERABLE.[], the relevant part of the original plan is as follows 83080:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 83078:LogicalProject(subset=[rel#83079:RelSubset#2.NONE.[]], the_month=[$82]) 83076:LogicalFilter(subset=[rel#83077:RelSubset#1.NONE.[]], condition=[<>($82, 'October')]) 83056:DruidQuery(subset=[rel#83075:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#83085:RelSubset#3.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 83074 LogicalProject(the_month=[$82]): rowcount = 1.0, cumulative cost = {40.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 83073 LogicalFilter(condition=[<>($82, 'October')]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 83072 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 83056 Sets: Set#0, type: RecordType(TIMESTAMP(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#83075:RelSubset#0.BINDABLE.[], best=rel#83056 rel#83056:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#83089:RelSubset#0.ENUMERABLE.[], best=rel#83088 rel#83088:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#83075), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(TIMESTAMP(0) tim
Druid Tests: DruidAdapter2IT.java#L990
0.1sec org.apache.calcite.test.DruidAdapter2IT > testDistinctCount() java.sql.SQLException: Error while executing SQL "explain plan for select "state_province", floor(count(distinct "city")) as cdc from "foodmart" group by "state_province" order by 2 desc limit 2": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[1 DESC]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#122747:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 122718:LogicalAggregate(group=[{0}], agg#0=[COUNT(DISTINCT $1)]) 122716:LogicalProject(subset=[rel#122717:RelSubset#1.NONE.[]], state_province=[$30], city=[$29]) 122697:DruidQuery(subset=[rel#122715:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#122728:RelSubset#4.ENUMERABLE.[1 DESC] Original rel: LogicalSort(sort0=[$1], dir0=[DESC], fetch=[2]): rowcount = 1.0, cumulative cost = {42.492346938775505 rows, 62.75102040816327 cpu, 0.0 io}, id = 122713 LogicalProject(state_province=[$0], CDC=[FLOOR($1)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 42.75102040816327 cpu, 0.0 io}, id = 122711 LogicalAggregate(group=[{0}], agg#0=[COUNT(DISTINCT $1)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 122709 LogicalProject(state_province=[$30], city=[$29]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 122707 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 122697 Sets: Set#0, type: RecordType(TIMESTAMP(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#122715:RelSubset#0.BINDABLE.[], best=rel#122697 rel#122697:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#122732:RelSubset#0.ENUMERABLE.[], best=rel#122731 r
Druid Tests: DruidAdapter2IT.java#L2597
0.0sec org.apache.calcite.test.DruidAdapter2IT > testDistinctCountWhenApproxResultsNotAccepted() java.sql.SQLException: Error while executing SQL "select count(distinct "store_state") from "foodmart"": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#147810:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 147803:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 147799:LogicalProject(subset=[rel#147801:RelSubset#1.NONE.[]], store_state=[$63]) 147782:DruidQuery(subset=[rel#147798:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#147810:RelSubset#2.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 147795 LogicalProject(store_state=[$63]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 147793 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 147782 Sets: Set#0, type: RecordType(TIMESTAMP(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#147798:RelSubset#0.BINDABLE.[], best=rel#147782 rel#147782:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#147819:RelSubset#0.ENUMERABLE.[], best=rel#147816 rel#147816:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#147798), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(VARCHAR store_state) rel#147801:RelSubset#1.NONE.[], best=null rel#147799:LogicalProject.NONE.[](input=RelSubset#147798,exprs=[$63]), rowcount=1.0, cumulative cost={inf} rel#147823:RelSubset#1.ENUMERABLE.[], best=rel#148112 rel#147821:Enumerabl
Druid Tests: DruidAdapter2IT.java#L2597
0.2sec org.apache.calcite.test.DruidAdapter2IT > testDistinctCountOnMetricRenamed() java.sql.SQLException: Error while executing SQL "select "B", count(distinct "A") from (select "unit_sales" as "A", "store_state" as "B" from "foodmart") group by "B"": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#154966:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 154962:LogicalAggregate(group=[{0}], EXPR$1=[COUNT(DISTINCT $1)]) 154960:LogicalProject(subset=[rel#154961:RelSubset#1.NONE.[]], B=[$63], A=[$89]) 154948:DruidQuery(subset=[rel#154959:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#154966:RelSubset#2.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{0}], EXPR$1=[COUNT(DISTINCT $1)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 154957 LogicalProject(B=[$63], A=[$89]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 154955 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 154948 Sets: Set#0, type: RecordType(TIMESTAMP(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#154959:RelSubset#0.BINDABLE.[], best=rel#154948 rel#154948:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#154970:RelSubset#0.ENUMERABLE.[], best=rel#154969 rel#154969:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#154959), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(VARCHAR B, BIGINT A) rel#154961:RelSubset#1.NONE.[], best=null rel#154960:LogicalProject.NONE.[](input=RelSubset#154959,exprs=[$63, $89]), rowcount=1.0, cumulative cost={inf} rel#154972:RelSubset
Druid Tests: DruidAdapterIT.java#L2970
0.0sec org.apache.calcite.test.DruidAdapterIT > testDistinctCountWhenApproxResultsNotAccepted() java.sql.SQLException: Error while executing SQL "select count(distinct "store_state") from "foodmart"": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#163080:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 163076:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 163074:LogicalProject(subset=[rel#163075:RelSubset#1.NONE.[]], store_state=[$63]) 163063:DruidQuery(subset=[rel#163073:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#163080:RelSubset#2.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 163071 LogicalProject(store_state=[$63]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 163069 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 163063 Sets: Set#0, type: RecordType(TIMESTAMP_WITH_LOCAL_TIME_ZONE(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#163073:RelSubset#0.BINDABLE.[], best=rel#163063 rel#163063:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#163084:RelSubset#0.ENUMERABLE.[], best=rel#163083 rel#163083:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#163073), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(VARCHAR store_state) rel#163075:RelSubset#1.NONE.[], best=null rel#163074:LogicalProject.NONE.[](input=RelSubset#163073,exprs=[$63]), rowcount=1.0, cumulative cost={inf} rel#163086:RelSubset#1.ENUMERABLE.[], best=rel#163100
Druid Tests: DruidAdapterIT.java#L2970
0.1sec org.apache.calcite.test.DruidAdapterIT > testDistinctCountOnMetric() java.sql.SQLException: Error while executing SQL "select count(distinct "store_sales") from "foodmart" where "store_state" = 'WA'": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#235427:RelSubset#3.ENUMERABLE.[], the relevant part of the original plan is as follows 235422:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 235420:LogicalProject(subset=[rel#235421:RelSubset#2.NONE.[]], store_sales=[$90]) 235418:LogicalFilter(subset=[rel#235419:RelSubset#1.NONE.[]], condition=[=($63, 'WA')]) 235397:DruidQuery(subset=[rel#235417:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#235427:RelSubset#3.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 235416 LogicalProject(store_sales=[$90]): rowcount = 1.0, cumulative cost = {40.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 235415 LogicalFilter(condition=[=($63, 'WA')]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 235414 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 235397 Sets: Set#0, type: RecordType(TIMESTAMP_WITH_LOCAL_TIME_ZONE(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#235417:RelSubset#0.BINDABLE.[], best=rel#235397 rel#235397:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#235431:RelSubset#0.ENUMERABLE.[], best=rel#235430 rel#235430:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#235417), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Se
Druid Tests: DruidAdapterIT.java#L2860
0.0sec org.apache.calcite.test.DruidAdapterIT > testNotFilterForm() java.sql.SQLException: Error while executing SQL "select count(distinct "the_month") from "foodmart" where "the_month" <> 'October'": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#239017:RelSubset#3.ENUMERABLE.[], the relevant part of the original plan is as follows 239012:LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]) 239010:LogicalProject(subset=[rel#239011:RelSubset#2.NONE.[]], the_month=[$82]) 239008:LogicalFilter(subset=[rel#239009:RelSubset#1.NONE.[]], condition=[<>($82, 'October')]) 238845:DruidQuery(subset=[rel#239007:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#239017:RelSubset#3.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{}], EXPR$0=[COUNT(DISTINCT $0)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 239006 LogicalProject(the_month=[$82]): rowcount = 1.0, cumulative cost = {40.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 239005 LogicalFilter(condition=[<>($82, 'October')]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 39.75102040816327 cpu, 0.0 io}, id = 239004 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 238845 Sets: Set#0, type: RecordType(TIMESTAMP_WITH_LOCAL_TIME_ZONE(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#239007:RelSubset#0.BINDABLE.[], best=rel#238845 rel#238845:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#239021:RelSubset#0.ENUMERABLE.[], best=rel#239020 rel#239020:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#239007), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io}
Druid Tests: DruidAdapterIT.java#L2970
0.3sec org.apache.calcite.test.DruidAdapterIT > testDistinctCountOnMetricRenamed() java.sql.SQLException: Error while executing SQL "select "B", count(distinct "A") from (select "unit_sales" as "A", "store_state" as "B" from "foodmart") group by "B"": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#275135:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 275131:LogicalAggregate(group=[{0}], EXPR$1=[COUNT(DISTINCT $1)]) 275129:LogicalProject(subset=[rel#275130:RelSubset#1.NONE.[]], B=[$63], A=[$89]) 275117:DruidQuery(subset=[rel#275128:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#275135:RelSubset#2.ENUMERABLE.[] Original rel: LogicalAggregate(group=[{0}], EXPR$1=[COUNT(DISTINCT $1)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 275126 LogicalProject(B=[$63], A=[$89]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 275124 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 275117 Sets: Set#0, type: RecordType(TIMESTAMP_WITH_LOCAL_TIME_ZONE(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#275128:RelSubset#0.BINDABLE.[], best=rel#275117 rel#275117:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#275139:RelSubset#0.ENUMERABLE.[], best=rel#275138 rel#275138:EnumerableInterpreter.ENUMERABLE.[](input=RelSubset#275128), rowcount=1.0, cumulative cost={38.867346938775505 rows, 39.25102040816327 cpu, 0.0 io} Set#1, type: RecordType(VARCHAR B, BIGINT A) rel#275130:RelSubset#1.NONE.[], best=null rel#275129:LogicalProject.NONE.[](input=RelSubset#275128,exprs=[$63, $89]), rowcount=1.0, cumulative cost={inf}
Druid Tests: DruidAdapterIT.java#L1265
0.0sec org.apache.calcite.test.DruidAdapterIT > testDistinctCount() java.sql.SQLException: Error while executing SQL "explain plan for select "state_province", floor(count(distinct "city")) as cdc from "foodmart" group by "state_province" order by 2 desc limit 2": There are not enough rules to produce a node with desired properties: convention=ENUMERABLE, sort=[1 DESC]. Missing conversion is LogicalAggregate[convention: NONE -> ENUMERABLE] There is 1 empty subset: rel#276926:RelSubset#2.ENUMERABLE.[], the relevant part of the original plan is as follows 276897:LogicalAggregate(group=[{0}], agg#0=[COUNT(DISTINCT $1)]) 276895:LogicalProject(subset=[rel#276896:RelSubset#1.NONE.[]], state_province=[$30], city=[$29]) 276876:DruidQuery(subset=[rel#276894:RelSubset#0.BINDABLE.[]], table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]) Root: rel#276907:RelSubset#4.ENUMERABLE.[1 DESC] Original rel: LogicalSort(sort0=[$1], dir0=[DESC], fetch=[2]): rowcount = 1.0, cumulative cost = {42.492346938775505 rows, 62.75102040816327 cpu, 0.0 io}, id = 276892 LogicalProject(state_province=[$0], CDC=[FLOOR($1)]): rowcount = 1.0, cumulative cost = {41.492346938775505 rows, 42.75102040816327 cpu, 0.0 io}, id = 276890 LogicalAggregate(group=[{0}], agg#0=[COUNT(DISTINCT $1)]): rowcount = 1.0, cumulative cost = {40.492346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 276888 LogicalProject(state_province=[$30], city=[$29]): rowcount = 1.0, cumulative cost = {39.367346938775505 rows, 40.75102040816327 cpu, 0.0 io}, id = 276886 DruidQuery(table=[[foodmart, foodmart]], intervals=[[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]]): rowcount = 1.0, cumulative cost = {38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io}, id = 276876 Sets: Set#0, type: RecordType(TIMESTAMP_WITH_LOCAL_TIME_ZONE(0) timestamp, VARCHAR product_id, VARCHAR brand_name, VARCHAR product_name, VARCHAR SKU, VARCHAR SRP, VARCHAR gross_weight, VARCHAR net_weight, VARCHAR recyclable_package, VARCHAR low_fat, VARCHAR units_per_case, VARCHAR cases_per_pallet, VARCHAR shelf_width, VARCHAR shelf_height, VARCHAR shelf_depth, VARCHAR product_class_id, VARCHAR product_subcategory, VARCHAR product_category, VARCHAR product_department, VARCHAR product_family, VARCHAR customer_id, VARCHAR account_num, VARCHAR lname, VARCHAR fname, VARCHAR mi, VARCHAR address1, VARCHAR address2, VARCHAR address3, VARCHAR address4, VARCHAR city, VARCHAR state_province, VARCHAR postal_code, VARCHAR country, VARCHAR customer_region_id, VARCHAR phone1, VARCHAR phone2, VARCHAR birthdate, VARCHAR marital_status, VARCHAR yearly_income, VARCHAR gender, VARCHAR total_children, VARCHAR num_children_at_home, VARCHAR education, VARCHAR date_accnt_opened, VARCHAR member_card, VARCHAR occupation, VARCHAR houseowner, VARCHAR num_cars_owned, VARCHAR fullname, VARCHAR promotion_id, VARCHAR promotion_district_id, VARCHAR promotion_name, VARCHAR media_type, VARCHAR cost, VARCHAR start_date, VARCHAR end_date, VARCHAR store_id, VARCHAR store_type, VARCHAR region_id, VARCHAR store_name, VARCHAR store_number, VARCHAR store_street_address, VARCHAR store_city, VARCHAR store_state, VARCHAR store_postal_code, VARCHAR store_country, VARCHAR store_manager, VARCHAR store_phone, VARCHAR store_fax, VARCHAR first_opened_date, VARCHAR last_remodel_date, VARCHAR store_sqft, VARCHAR grocery_sqft, VARCHAR frozen_sqft, VARCHAR meat_sqft, VARCHAR coffee_bar, VARCHAR video_store, VARCHAR salad_bar, VARCHAR prepared_food, VARCHAR florist, VARCHAR time_id, VARCHAR the_day, VARCHAR the_month, VARCHAR the_year, VARCHAR day_of_month, VARCHAR week_of_year, VARCHAR month_of_year, VARCHAR quarter, VARCHAR fiscal_period, BIGINT unit_sales, DOUBLE store_sales, DOUBLE store_cost) rel#276894:RelSubset#0.BINDABLE.[], best=rel#276876 rel#276876:DruidQuery.BINDABLE.[](table=[foodmart, foodmart],intervals=[1900-01-09T00:00:00.000Z/2992-01-10T00:00:00.000Z]), rowcount=1.0, cumulative cost={38.367346938775505 rows, 38.75102040816327 cpu, 0.0 io} rel#276911:RelSubset#0.ENUMERABLE.[],
Linux (JDK 19)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 19)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Linux (JDK 8), latest Guava, America/New_York Timezone
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 8), latest Guava, America/New_York Timezone
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Linux (JDK 17)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 17)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
macOS (JDK 19)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
macOS (JDK 19)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Linux (JDK 8), oldest Guava, America/New_York Timezone
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 8), oldest Guava, America/New_York Timezone
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Linux (JDK 11), Pacific/Chatham Timezone
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 11), Pacific/Chatham Timezone
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Error Prone (JDK 11), latest Guava
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Error Prone (JDK 11), latest Guava
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Linux (JDK 11), Avatica main
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/setup-java@v2, burrunan/gradle-cache-action@v1, actions/checkout@v3. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Linux (JDK 11), Avatica main
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Windows (JDK 17)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Windows (JDK 17)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Windows (JDK 8)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Windows (JDK 8)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Druid Tests
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/setup-java@v2, actions/checkout@v3, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Druid Tests
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
CheckerFramework (JDK 11)
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
CheckerFramework (JDK 11)
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
CheckerFramework (JDK 11), oldest Guava
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v3, actions/setup-java@v2, burrunan/gradle-cache-action@v1. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
CheckerFramework (JDK 11), oldest Guava
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-java@v2. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/