-
Notifications
You must be signed in to change notification settings - Fork 31
Models
Alexandru Dinu edited this page Aug 28, 2019
·
9 revisions
-
cae_32x32x32_zero_pad_bin
(best performing model)
CAE(
(e_conv_1): Sequential(
(0): ZeroPad2d(padding=(1, 2, 1, 2), value=0.0)
(1): Conv2d(3, 64, kernel_size=(5, 5), stride=(2, 2))
(2): LeakyReLU(negative_slope=0.01)
)
(e_conv_2): Sequential(
(0): ZeroPad2d(padding=(1, 2, 1, 2), value=0.0)
(1): Conv2d(64, 128, kernel_size=(5, 5), stride=(2, 2))
(2): LeakyReLU(negative_slope=0.01)
)
(e_block_1): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(e_block_2): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(e_block_3): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(e_conv_3): Sequential(
(0): Conv2d(128, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): Tanh()
)
(d_up_conv_1): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(1): LeakyReLU(negative_slope=0.01)
(2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(3): ConvTranspose2d(64, 128, kernel_size=(2, 2), stride=(2, 2))
)
(d_block_1): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(d_block_2): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(d_block_3): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(2): LeakyReLU(negative_slope=0.01)
(3): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
)
(d_up_conv_2): Sequential(
(0): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1))
(1): LeakyReLU(negative_slope=0.01)
(2): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(3): ConvTranspose2d(32, 256, kernel_size=(2, 2), stride=(2, 2))
)
(d_up_conv_3): Sequential(
(0): Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1))
(1): LeakyReLU(negative_slope=0.01)
(2): ReflectionPad2d((2, 2, 2, 2))
(3): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1))
(4): Tanh()
)
)