Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed a bug with running a local method on tasks with integer parameters #162

Merged
merged 1 commit into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion iOpt/method/local_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def evaluate_function(self, y: List[float]) -> float:
if self.max_calcs != -1 and self.calcs_count >= self.max_calcs:
function_value.value = sys.float_info.max
return function_value.value
for i in range(self.task.problem.dimension):
for i in range(self.task.problem.number_of_float_variables):
if (y[i] < self.task.problem.lower_bound_of_float_variables[i]) \
or (y[i] > self.task.problem.upper_bound_of_float_variables[i]):
function_value.value = sys.float_info.max
Expand Down
17 changes: 16 additions & 1 deletion test/test_solving_test_problems.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
import unittest
import numpy as np
from iOpt.problem import Problem
from iOpt.trial import Point
from problems.GKLS import GKLS
from problems.rastrigin import Rastrigin
from problems.rastriginInt import RastriginInt
from problems.xsquared import XSquared
from problems.hill import Hill
from problems.shekel import Shekel
Expand All @@ -15,6 +17,7 @@
from iOpt.solver_parametrs import SolverParameters



class TestSolvingProblems(unittest.TestCase):
"""setUp method is overridden from the parent class Rastrigin"""

Expand All @@ -29,7 +32,7 @@ def checkIsSolved(self, problem: Problem, params: SolverParameters, number_of_gl
sol = solver.solve()

# Проверяем что найденный АГП минимумом соответствуйте априори известному, для этой задачи, с точностью eps
for j in range(problem.dimension):
for j in range(problem.number_of_float_variables):
fabsx = np.abs(problem.known_optimum[0].point.float_variables[j] -
sol.best_trials[0].point.float_variables[j])
fm = params.eps * (problem.upper_bound_of_float_variables[j] -
Expand All @@ -38,6 +41,7 @@ def checkIsSolved(self, problem: Problem, params: SolverParameters, number_of_gl

# Проверяем что на решение потребовалось правильное число итераций АГП
self.assertEqual(sol.number_of_global_trials, number_of_global_trials)
return sol

def test_Rastrigin_Solve(self):
r = 3.5
Expand All @@ -47,6 +51,17 @@ def test_Rastrigin_Solve(self):

self.checkIsSolved(problem, params, number_of_global_trials)

def test_RastriginInt_Solve(self):
r = 3.5
problem = RastriginInt(dimension=5, number_of_discrete_variables=3)
start_point: Point = Point(float_variables=[0.5, 0.5], discrete_variables=['A', 'B', 'A'])
params = SolverParameters(r=r, eps=self.epsVal, iters_limit=100000, start_point=start_point,
number_of_parallel_points=1, refine_solution=True)
number_of_global_trials = 5678

sol = self.checkIsSolved(problem, params, number_of_global_trials)
self.assertEqual(sol.number_of_local_trials, 70)

def test_XSquared_Solve(self):
r = 3.5
problem = XSquared(1)
Expand Down