Documentation | |
Build Status | |
Code Style | |
Downloads | |
Citation |
Fast Jacobian and Hessian sparsity detection via operator-overloading.
To install this package, open the Julia REPL and run
julia> ]add SparseConnectivityTracer
For functions y = f(x)
and f!(y, x)
, the sparsity pattern of the Jacobian can be obtained
by computing a single forward-pass through the function:
julia> using SparseConnectivityTracer
julia> detector = TracerSparsityDetector();
julia> x = rand(3);
julia> f(x) = [x[1]^2, 2 * x[1] * x[2]^2, sin(x[3])];
julia> jacobian_sparsity(f, x, detector)
3×3 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries:
1 ⋅ ⋅
1 1 ⋅
⋅ ⋅ 1
As a larger example, let's compute the sparsity pattern from a convolutional layer from Flux.jl:
julia> using SparseConnectivityTracer, Flux
julia> detector = TracerSparsityDetector();
julia> x = rand(28, 28, 3, 1);
julia> layer = Conv((3, 3), 3 => 2);
julia> jacobian_sparsity(layer, x, detector)
1352×2352 SparseArrays.SparseMatrixCSC{Bool, Int64} with 36504 stored entries:
⎡⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎤
⎢⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠻⣷⣄⠀⎥
⎢⢤⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠛⢦⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠳⣤⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠓⎥
⎢⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⣄⠀⠀⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠻⣷⣄⠀⠀⠀⠀⎥
⎢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⠀⠀⎥
⎣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢿⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⢿⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣷⣄⎦
For scalar functions y = f(x)
, the sparsity pattern of the Hessian of f
:
julia> x = rand(5);
julia> f(x) = x[1] + x[2]*x[3] + 1/x[4] + 1*x[5];
julia> hessian_sparsity(f, x, detector)
5×5 SparseArrays.SparseMatrixCSC{Bool, Int64} with 3 stored entries:
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅
julia> g(x) = f(x) + x[2]^x[5];
julia> hessian_sparsity(g, x, detector)
5×5 SparseArrays.SparseMatrixCSC{Bool, Int64} with 7 stored entries:
⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 1 ⋅ 1
⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ 1
For more detailed examples, take a look at the documentation.
TracerSparsityDetector
returns conservative sparsity patterns over the entire input domain of x
.
It is not compatible with functions that require information about the primal values of a computation (e.g. iszero
, >
, ==
).
To compute a less conservative sparsity pattern at an input point x
, use TracerLocalSparsityDetector
instead.
Note that patterns computed with TracerLocalSparsityDetector
depend on the input x
and have to be recomputed when x
changes:
julia> using SparseConnectivityTracer
julia> detector = TracerLocalSparsityDetector();
julia> f(x) = ifelse(x[2] < x[3], x[1] ^ x[2], x[3] * x[4]);
julia> hessian_sparsity(f, [1 2 3 4], detector)
4×4 SparseArrays.SparseMatrixCSC{Bool, Int64} with 4 stored entries:
1 1 ⋅ ⋅
1 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
julia> hessian_sparsity(f, [1 3 2 4], detector)
4×4 SparseArrays.SparseMatrixCSC{Bool, Int64} with 2 stored entries:
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1
⋅ ⋅ 1 ⋅
SparseConnectivityTracer uses ADTypes.jl's interface for sparsity detection,
making it compatible with DifferentiationInterface.jl's sparse automatic differentiation functionality.
In fact, the functions jacobian_sparsity
and hessian_sparsity
are re-exported from ADTypes.
- SparseDiffTools.jl: automatic sparsity detection via Symbolics.jl and Cassette.jl
- SparsityTracing.jl: automatic Jacobian sparsity detection using an algorithm based on SparsLinC by Bischof et al. (1996)
Adrian Hill acknowledges support by the Federal Ministry of Education and Research (BMBF) for the Berlin Institute for the Foundations of Learning and Data (BIFOLD) (01IS18037A).