Skip to content
/ monopsr Public
forked from kujason/monopsr

Monocular 3D Object Detection

License

Notifications You must be signed in to change notification settings

adpon/monopsr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MonoPSR (CVPR 2019)

Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction

Jason Ku*, Alex D. Pon*, Steven L. Waslander (*Equal Contribution)

This repository contains the public release of the Tensorflow implementation of Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction.

Video

Demo video showing results on several KITTI sequences.

Getting Started

Implemented and tested on Ubuntu 16.04 with Python 3.5 and Tensorflow 1.8.0.

Clone this repo

git clone [email protected]:kujason/monopsr.git

Install Python dependencies

cd monopsr
pip3 install -r requirements.txt

Add monopsr/src to your PYTHONPATH

# For virtualenvwrapper users
add2virtualenv src/.

Compile the two custom TF ops src/tf_ops/nn_distance and src/tf_ops/approxmatch by running the shell scripts found in the respective folders. The location of your TensorFlow python package is passed as an argument.

For example:

sh src/tf_ops/approxmatch/tf_approxmatch_compile.sh ${HOME}/.virtualenvs/{monopsr}/lib/python3.5/site-packages/tensorflow
sh src/tf_ops/nn_distance/tf_nndistance_compile.sh ${HOME}/.virtualenvs/{monopsr}/lib/python3.5/site-packages/tensorflow

Training

To train on the KITTI Object Detection Dataset:

Download the data and place it in your home folder at ~/Kitti/object.

Go here and download the train.txt, val.txt and trainval.txt splits into ~/Kitti/object.

/home/$USER/Kitti
    object
        testing
        training
            calib
            image_2
            label_2
            velodyne
        train.txt
        trainval.txt
        val.txt

2D Detections

Download the MSCNN 2D detections here and place it in monopsr/data/detections/mscnn

Depth Maps and Instance Masks

Generate the ground truth depth maps and instance segmentation:

python demos/depth_completion/save_lidar_depth_maps.py
python demos/instances/gen_instance_masks.py

Place the depth maps and segmentation outputs in ~/Kitti/object/training/.

/home/$USER/Kitti
    object
        testing
        training
            calib
            *depth_2_multiscale
            image_2
            *instance_2_multiscale
            label_2
            velodyne
        train.txt
        val.txt

* denotes generated folders

Pre-trained ResNet-101

Download the pre-trained ResNet-101 model (faster_rcnn_resnet101_kitti) from the Tensorflow Object Detection API here, and extract it in data/pretrained as data/pretrained/faster_rcnn_resnet101_kitti_2018_01_28

Model Configuration

A sample configuration for training is in src/monopsr/configs. You can train using the example configs, or modify an existing configuration.

Run Training

To start training, run the following:

python src/monopsr/experiments/run_training.py --config_path='src/monopsr/configs/monopsr_model_000.yaml' 

Run Evaluation

To start evaluation, run the following:

python src/monopsr/experiments/run_evaluation.py --config_path='src/monopsr/configs/monopsr_model_000.yaml'

Note, we primarily use this script to determine metrics on the centroid and point cloud estimation. This is not used to obtain the validation results in the paper since it uses some ground truth boxes. To get the validation results in the paper we use run_inference.py.

Run Inference

To start inference, run the following:

python src/monopsr/experiments/run_inference.py --config_path='src/monopsr/configs/monopsr_model_000
.yaml' --default_ckpt_num='100000' --data_split='val'

To calculate AP performance, follow the instructions in scripts/offline_eval/kitti_native_eval

Contact

Please contact [email protected] or [email protected] for any questions or issues.

About

Monocular 3D Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 88.4%
  • C++ 10.2%
  • Cuda 1.2%
  • Other 0.2%