Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: Replacing output file name in PCA Decomposition to enum class #381

Merged
merged 1 commit into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 39 additions & 24 deletions geochemistrypi/data_mining/model/decomposition.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from ..utils.base import clear_output, save_data, save_fig
from ._base import WorkflowBase
from .func.algo_decomposition._common import plot_2d_scatter_diagram, plot_contour, plot_heatmap
from .func.algo_decomposition._enum import DecompositionCommonFunction, PCASpecialFunction
from .func.algo_decomposition._mds import mds_manual_hyper_parameters
from .func.algo_decomposition._pca import biplot, pca_manual_hyper_parameters, triplot
from .func.algo_decomposition._tsne import tsne_manual_hyper_parameters
Expand All @@ -21,7 +22,7 @@
class DecompositionWorkflowBase(WorkflowBase):
"""The base workflow class of decomposition algorithms."""

common_function = ["Model Persistence"] # 'Decomposition Result',
common_function = [func.value for func in DecompositionCommonFunction] # 'Decomposition Result',

def __init__(self) -> None:
super().__init__()
Expand Down Expand Up @@ -117,7 +118,7 @@ class PCADecomposition(DecompositionWorkflowBase):
"""The automation workflow of using PCA algorithm to make insightful products."""

name = "PCA"
special_function = ["Principal Components", "Explained Variance Ratio", "Compositional Bi-plot", "Compositional Tri-plot"]
special_function = [func.value for func in PCASpecialFunction]

def __init__(
self,
Expand Down Expand Up @@ -268,48 +269,57 @@ def manual_hyper_parameters(cls) -> Dict:
clear_output()
return hyper_parameters

def _get_principal_components(self) -> None:
@staticmethod
def _get_principal_components(graph_name: str, n_components: Optional[int], trained_model: object) -> None:
"""Get principal components."""
print("-----* Principal Components *-----")
print(f"-----* {graph_name} *-----")
print("Every column represents one principal component respectively.")
print("Every row represents how much that row feature contributes to each principal component respectively.")
print("The tabular data looks like in format: 'rows x columns = 'features x principal components'.")
pc_name = []
for i in range(self.n_components):
for i in range(n_components):
pc_name.append(f"PC{i+1}")
self.pc_data = pd.DataFrame(self.model.components_.T)
self.pc_data.columns = pc_name
self.pc_data.set_index(DecompositionWorkflowBase.X.columns, inplace=True)
print(self.pc_data)
pc_data = pd.DataFrame(trained_model.components_.T)
pc_data.columns = pc_name
pc_data.set_index(DecompositionWorkflowBase.X.columns, inplace=True)
print(pc_data)

def _get_explained_variance_ratio(self) -> None:
@staticmethod
def _get_explained_variance_ratio(graph_name: str, trained_model: object) -> None:
"""Get explained variance ratio."""
print("-----* Explained Variance Ratio *-----")
print(self.model.explained_variance_ratio_)
print(f"-----* {graph_name} *-----")
print(trained_model.explained_variance_ratio_)

@staticmethod
def _biplot(reduced_data: pd.DataFrame, pc_data: pd.DataFrame, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
def _biplot(reduced_data: pd.DataFrame, pc_data: pd.DataFrame, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
"""Draw bi-plot."""
print("-----* Compositional Bi-plot *-----")
print(f"-----* {graph_name} *-----")
biplot(reduced_data, pc_data, algorithm_name)
save_fig(f"Compositional Bi-plot - {algorithm_name}", local_path, mlflow_path)
save_data(reduced_data, "Compositional Bi-plot - Reduced Data", local_path, mlflow_path)
save_data(pc_data, "Compositional Bi-plot - PC Data", local_path, mlflow_path)
save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path)
save_data(reduced_data, f"{graph_name} - Reduced Data", local_path, mlflow_path)
save_data(pc_data, f"{graph_name} - PC Data", local_path, mlflow_path)

@staticmethod
def _triplot(reduced_data: pd.DataFrame, pc_data: pd.DataFrame, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
def _triplot(reduced_data: pd.DataFrame, pc_data: pd.DataFrame, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None:
"""Draw tri-plot."""
print("-----* Compositional Tri-plot *-----")
print(f"-----* {graph_name} *-----")
triplot(reduced_data, pc_data, algorithm_name)
save_fig(f"Compositional Tri-plot - {algorithm_name}", local_path, mlflow_path)
save_data(reduced_data, "Compositional Tri-plot - Reduced Data", local_path, mlflow_path)
save_data(pc_data, "Compositional Tri-plot - PC Data", local_path, mlflow_path)
save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path)
save_data(reduced_data, f"{graph_name} - Reduced Data", local_path, mlflow_path)
save_data(pc_data, f"{graph_name} - PC Data", local_path, mlflow_path)

def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
"""Invoke all special application functions for this algorithms by Scikit-learn framework."""
self._reduced_data2pd(kwargs["reduced_data"], kwargs["components_num"])
self._get_principal_components()
self._get_explained_variance_ratio()
self._get_principal_components(
graph_name=PCASpecialFunction.PRINCIPAL_COMPONENTS.value,
trained_model=self.model,
n_components=self.n_components,
)
self._get_explained_variance_ratio(
graph_name=PCASpecialFunction.EXPLAINED_VARIANCE_RATIO.value,
trained_model=self.model,
)

GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH = os.getenv("GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH")
# Draw graphs when the number of principal components > 3
Expand All @@ -320,6 +330,7 @@ def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
self._biplot(
reduced_data=two_dimen_reduced_data,
pc_data=two_dimen_pc_data,
graph_name=PCASpecialFunction.COMPOSITIONAL_BI_PLOT.value,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH,
mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH,
Expand All @@ -331,6 +342,7 @@ def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
self._triplot(
reduced_data=three_dimen_reduced_data,
pc_data=three_dimen_pc_data,
graph_name=PCASpecialFunction.COMPOSITIONAL_TRI_PLOT.value,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH,
mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH,
Expand All @@ -342,6 +354,7 @@ def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
self._biplot(
reduced_data=two_dimen_reduced_data,
pc_data=two_dimen_pc_data,
graph_name=PCASpecialFunction.COMPOSITIONAL_BI_PLOT.value,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH,
mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH,
Expand All @@ -350,6 +363,7 @@ def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
self._triplot(
reduced_data=self.X_reduced,
pc_data=self.pc_data,
graph_name=PCASpecialFunction.COMPOSITIONAL_TRI_PLOT.value,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH,
mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH,
Expand All @@ -358,6 +372,7 @@ def special_components(self, **kwargs: Union[Dict, np.ndarray, int]) -> None:
self._biplot(
reduced_data=self.X_reduced,
pc_data=self.pc_data,
graph_name=PCASpecialFunction.COMPOSITIONAL_BI_PLOT.value,
algorithm_name=self.naming,
local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH,
mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH,
Expand Down
12 changes: 12 additions & 0 deletions geochemistrypi/data_mining/model/func/algo_decomposition/_enum.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
from enum import Enum


class DecompositionCommonFunction(Enum):
MODEL_PERSISTENCE = "Model Persistence"


class PCASpecialFunction(Enum):
PRINCIPAL_COMPONENTS = "Principal Components"
EXPLAINED_VARIANCE_RATIO = "Explained Variance Ratio"
COMPOSITIONAL_BI_PLOT = "Compositional Bi-plot"
COMPOSITIONAL_TRI_PLOT = "Compositional Tri-plot"
Loading