-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet.py
127 lines (102 loc) · 4.99 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
from functools import partial
from dataclasses import dataclass
from collections import OrderedDict
class Conv2dAuto(nn.Conv2d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2)
conv3x3 = partial(Conv2dAuto, kernel_size=3, bias=False)
def activation_func(activation):
return nn.ModuleDict([
['relu', nn.ReLU(inplace=True)],
['leaky_relu', nn.LeakyReLU(negative_slope=0.01, inplace=True)],
['selu', nn.SELU(inplace=True)],
['none', nn.Identity()]
])[activation]
def conv_bn(in_channels, out_channels, conv, *args, **kwargs):
return nn.Sequential(conv(in_channels, out_channels, *args, **kwargs), nn.BatchNorm2d(out_channels))
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, activation='relu'):
super().__init__()
self.in_channels, self.out_channels, self.activation = in_channels, out_channels, activation
self.blocks = nn.Identity()
self.activate = activation_func(activation)
self.shortcut = nn.Identity()
def forward(self, x):
residual = x
if self.should_apply_shortcut: residual = self.shortcut(x)
x = self.blocks(x)
x += residual
x = self.activate(x)
return x
@property
def should_apply_shortcut(self):
return self.in_channels != self.out_channels
class ResNetResidualBlock(ResidualBlock):
def __init__(self, in_channels, out_channels, expansion=1, downsampling=1, conv=conv3x3, *args, **kwargs):
super().__init__(in_channels, out_channels)
self.expansion, self.downsampling, self.conv = expansion, downsampling, conv
self.shortcut = nn.Sequential(
nn.Conv2d(self.in_channels, self.expanded_channels, kernel_size=1,
stride=self.downsampling, bias=False),
nn.BatchNorm2d(self.expanded_channels)) if self.should_apply_shortcut else None
@property
def expanded_channels(self):
return self.out_channels * self.expansion
@property
def should_apply_shortcut(self):
return self.in_channels != self.expanded_channels
class ResNetBasicBlock(ResNetResidualBlock):
expansion = 1
def __init__(self, in_channels, out_channels, *args, **kwargs):
super().__init__(in_channels, out_channels, *args, **kwargs)
self.blocks = nn.Sequential(
conv_bn(self.in_channels, self.out_channels, conv=self.conv, bias=False, stride=self.downsampling),
activation_func(self.activation),
conv_bn(self.out_channels, self.expanded_channels, conv=self.conv, bias=False),
)
class ResNetLayer(nn.Module):
def __init__(self, in_channels, out_channels, block=ResNetBasicBlock, n=1, *args, **kwargs):
super().__init__()
# 'We perform downsampling directly by convolutional layers that have a stride of 2.'
downsampling = 2 if in_channels != out_channels else 1
self.blocks = nn.Sequential(
block(in_channels , out_channels, *args, **kwargs, downsampling=downsampling),
*[block(out_channels * block.expansion,
out_channels, downsampling=1, *args, **kwargs) for _ in range(n - 1)]
)
def forward(self, x):
x = self.blocks(x)
return x
class ResNetEncoder(nn.Module):
"""
ResNet encoder composed by increasing different layers with increasing features.
"""
def __init__(self, in_channels=3, blocks_sizes=[32, 32, 64, 64], depths=[2,2,2,2],
activation='relu', block=ResNetBasicBlock, *args, **kwargs):
super().__init__()
self.blocks_sizes = blocks_sizes
self.gate = nn.Sequential(
nn.Conv2d(in_channels, self.blocks_sizes[0], kernel_size=(5,7), stride=2, padding=3, bias=False),
nn.BatchNorm2d(self.blocks_sizes[0]),
activation_func(activation),
nn.MaxPool2d(kernel_size=(4,6), stride=(2,3), padding=1)
)
self.in_out_block_sizes = list(zip(blocks_sizes, blocks_sizes[1:]))
self.blocks = nn.ModuleList([
ResNetLayer(blocks_sizes[0], blocks_sizes[0], n=depths[0], activation=activation,
block=block,*args, **kwargs),
*[ResNetLayer(in_channels * block.expansion,
out_channels, n=n, activation=activation,
block=block, *args, **kwargs)
for (in_channels, out_channels), n in zip(self.in_out_block_sizes, depths[1:])]
])
def forward(self, x):
x = self.gate(x)
for block in self.blocks:
x = block(x)
return x
def ResnetEncoderModel(in_channels,blocks_sizes=[16,32,64,32,16], depths=[2,2,2,2,2], activation='relu'):
return ResNetEncoder(in_channels,blocks_sizes=blocks_sizes,depths=depths,activation=activation)