Skip to content

Materials for UCL Artificial Intelligence Society Machine Learning Tutorials Season 1 (2020/2021)

License

Notifications You must be signed in to change notification settings

UCLAIS/Machine-Learning-Tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UCL-AI-Society-ML-Tutorials

Season 1 (2020/2021)

Season 2 (21/22) Repo is right here -> https://github.com/UCLAIS/ML-Tutorials-Season-2

Contributors

Media

On our YouTube channel, you can watch our lectures and recordings of solution walk-through.
YouTube channel: UCL Artificial Intelligence Society

On our Discord channel, you can ask any questions you may have on our notebooks.
Discord channel invite link: UCL AI soc Discord

Check our Facebook events for the zoom link of the live session - AISoc.ucl

Tutorial notebooks & live lecture recordings

Release Date Title Solution video Contents Remarks
22th Oct 2020 Numerical Computation and Visualisation Notebook 1 solution Numpy, Pandas and Matplotlib movie data
NYC taxi data
5th Nov 2020 Supervised Learning Notebook 2 solution Regressions, Classification and Cross Validations N.A.
19th Nov 2020 More on supervised learning and Intro to Unsupervised learning Notebook 3 solution SVM, PCA, K-Means N.A.
3rd Dec 2020 Intro to Deep Learning Notebook 4 solution Perceptrons, Tensorflow, Keras and Pytorch MNIST Digits from Kaggle

Pre-recorded lecture videos

Release Date Title Lecture video Contents Slides
5th Nov 2020 Introduction to Machine Learning Lecture 01 Introduction,
Data preprocessing,
Mathematical Fundamentals,
Linear Regression
Slide 01
19th Nov 2020 Building Blocks of ML Lecture 02 Optimization,
Linear algebra,
Kernel Tricks
Slide 02
3rd Dec 2020 Supervised Learning (Advanced) Lecture 03 KNN,
SVM,
Random Forest
Slide 03

Specific Contents

1. Machine Learning

1) Machine Learning Basics

  1. Numpy, Pandas, Matplotlib

  2. Exploratory Data Analysis (EDA)

  3. Scikit-learn Basics
    a. Train test split
    b. Cross validation
    c. K-fold cross validation
    d. How to prepare your data before training

  4. Model Evaluation (Can skip this)
    a. Accuracy, precision, recall
    b. ROC Curve and AUC
    c. F1-Score


2) Supervised Learning

  1. Regression
    a. Linear Regression
    b. Multivariate Regression
    c. Ridge, Lasso, ElasticNet
    d. Boston house price prediction

  2. Classification
    a. Logistic Regression
    b. Support Vector Machine
    i. Linear SVM
    ii. Kernel SVM
    c. Naïve Bayes

  3. Decision Trees and Ensemble
    a. Binary Tree Decision Tree
    b. Hyper-parameter Tuning with GridSearchCV()
    c. Ensemble


3) Unsupervised Learning

  1. Unsupervised Learning: Clustering
    a. K-Means Clustering

  2. Primary Component Analysis (PCA) and Dimensionality Reduction


2. Deep Learning

4) Artifical Neural Networks

  1. Perceptron
    a. SLP
    b. MLP

  2. Tensorflow 2.0 + Keras Intro
    a. Now 2.0 has changed from beta to stable version so time to learn this
    b. Tensor Constant, Data type, LR with Tensorflow
    c. Keras Sequential, layers, model.compile()

  3. Optimization (if time permits)
    a. Back Propagation
    a. Gradient Descent
    b. Stochastic Gradient Descent
    c. Adagrad
    d. Adadelta
    e. RMSprop
    f. Adam
    g. RAdam

  4. Regularization Techniques
    a. Overfitting
    b. Data Augmentation (if time permits)
    c. Drop-out
    d. Batch Normalisation (if time permits)

  5. CNN
    a. Data Augmentation for Computer Vision
    b. Convolution Layer
    c. Pooling
    d. Feature Map

  6. Popular CNN Architectures
    a. AlexNet
    b. VGGNet
    c. GoogleNet
    d. ResNet
    e. Inception

  7. Application of CNN - Style Transfer

  8. Vanilla RNN

  9. Long Short Term Memory (LSTM)

  10. Bidirectional RNN

  11. Tokenizing

  12. Stopwords

  13. Stemming

  14. TF-IDF

  15. Word Embedding

  16. Word2Vec

  17. A simple Chatbot


5) Reinforcement Learning

  1. Elements of a RL problem and mathematical definitions

  2. Morkov Decision Processes Formalism

  3. Policy gradient algorithms
    a. REINFORCE
    b. Advantage Actor Critic (A2C)
    c. Asynchronous Advantage Actor Critic (A3C)

  4. Q-learning
    a. SARSA
    b. DQN
    c. DQN Extensions

About

Materials for UCL Artificial Intelligence Society Machine Learning Tutorials Season 1 (2020/2021)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •