Season 2 (21/22) Repo is right here -> https://github.com/UCLAIS/ML-Tutorials-Season-2
- Danny Toeun Kim (Maintainer since 19/20)
- Jianqiao Mao (20/21)
- Kamen Brestnichki (20/21)
- Heejoon Koo (19/20)
- Maria Kapros (19/20)
On our YouTube channel, you can watch our lectures and recordings of solution walk-through.
YouTube channel: UCL Artificial Intelligence Society
On our Discord channel, you can ask any questions you may have on our notebooks.
Discord channel invite link: UCL AI soc Discord
Check our Facebook events for the zoom link of the live session - AISoc.ucl
Release Date | Title | Solution video | Contents | Remarks |
---|---|---|---|---|
22th Oct 2020 | Numerical Computation and Visualisation | Notebook 1 solution | Numpy, Pandas and Matplotlib |
movie data NYC taxi data |
5th Nov 2020 | Supervised Learning | Notebook 2 solution | Regressions, Classification and Cross Validations | N.A. |
19th Nov 2020 | More on supervised learning and Intro to Unsupervised learning | Notebook 3 solution | SVM, PCA, K-Means | N.A. |
3rd Dec 2020 | Intro to Deep Learning | Notebook 4 solution | Perceptrons, Tensorflow, Keras and Pytorch | MNIST Digits from Kaggle |
Release Date | Title | Lecture video | Contents | Slides |
---|---|---|---|---|
5th Nov 2020 | Introduction to Machine Learning | Lecture 01 | Introduction, Data preprocessing, Mathematical Fundamentals, Linear Regression |
Slide 01 |
19th Nov 2020 | Building Blocks of ML | Lecture 02 | Optimization, Linear algebra, Kernel Tricks |
Slide 02 |
3rd Dec 2020 | Supervised Learning (Advanced) | Lecture 03 | KNN, SVM, Random Forest |
Slide 03 |
-
Numpy, Pandas, Matplotlib
-
Exploratory Data Analysis (EDA)
-
Scikit-learn Basics
a. Train test split
b. Cross validation
c. K-fold cross validation
d. How to prepare your data before training -
Model Evaluation (Can skip this)
a. Accuracy, precision, recall
b. ROC Curve and AUC
c. F1-Score
-
Regression
a. Linear Regression
b. Multivariate Regression
c. Ridge, Lasso, ElasticNet
d. Boston house price prediction -
Classification
a. Logistic Regression
b. Support Vector Machine
i. Linear SVM
ii. Kernel SVM
c. Naïve Bayes -
Decision Trees and Ensemble
a. Binary Tree Decision Tree
b. Hyper-parameter Tuning with GridSearchCV()
c. Ensemble
-
Unsupervised Learning: Clustering
a. K-Means Clustering -
Primary Component Analysis (PCA) and Dimensionality Reduction
-
Perceptron
a. SLP
b. MLP -
Tensorflow 2.0 + Keras Intro
a. Now 2.0 has changed from beta to stable version so time to learn this
b. Tensor Constant, Data type, LR with Tensorflow
c. Keras Sequential, layers, model.compile() -
Optimization (if time permits)
a. Back Propagation
a. Gradient Descent
b. Stochastic Gradient Descent
c. Adagrad
d. Adadelta
e. RMSprop
f. Adam
g. RAdam -
Regularization Techniques
a. Overfitting
b. Data Augmentation (if time permits)
c. Drop-out
d. Batch Normalisation (if time permits) -
CNN
a. Data Augmentation for Computer Vision
b. Convolution Layer
c. Pooling
d. Feature Map -
Popular CNN Architectures
a. AlexNet
b. VGGNet
c. GoogleNet
d. ResNet
e. Inception -
Application of CNN - Style Transfer
-
Vanilla RNN
-
Long Short Term Memory (LSTM)
-
Bidirectional RNN
-
Tokenizing
-
Stopwords
-
Stemming
-
TF-IDF
-
Word Embedding
-
Word2Vec
-
A simple Chatbot
-
Elements of a RL problem and mathematical definitions
-
Morkov Decision Processes Formalism
-
Policy gradient algorithms
a. REINFORCE
b. Advantage Actor Critic (A2C)
c. Asynchronous Advantage Actor Critic (A3C) -
Q-learning
a. SARSA
b. DQN
c. DQN Extensions