Skip to content

Commit

Permalink
deploy: 0577964
Browse files Browse the repository at this point in the history
  • Loading branch information
patrickwalls committed Jun 15, 2023
1 parent c06cbe1 commit e57778c
Show file tree
Hide file tree
Showing 47 changed files with 51 additions and 82 deletions.
2 changes: 1 addition & 1 deletion .buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 4439ad46c51a0527f916642d49c5f71a
config: 790b1f6d55ecd7a900234d71881ced93
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Diff not rendered.
Diff not rendered.
2 changes: 1 addition & 1 deletion _sources/eigenvalues/diagonalization.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ $$
c_A(x) = \pm \prod_{i=1}^k (x - \lambda_i)^{m_i}
$$
where $\lambda_1, \dots, \lambda_k$ are the *distinct* eigenvalues of $A$. The **algebraic multiplicity** of $\lambda_i$ is the power $m_i$ in the factored charactersitic polynomial. In other words, the algebraic multiplicity of $\lambda_i$ is the number of times $\lambda_i$ occurs as a root of the characteristic polynomial $c_A(x)$.
where $\lambda_1, \dots, \lambda_k$ are the *distinct* eigenvalues of $A$. The **algebraic multiplicity** of $\lambda_i$ is the power $m_i$ in the factored characteristic polynomial. In other words, the algebraic multiplicity of $\lambda_i$ is the number of times $\lambda_i$ occurs as a root of the characteristic polynomial $c_A(x)$.
```

```{div} definition
Expand Down
24 changes: 7 additions & 17 deletions _sources/eigenvalues/svd.md
Original file line number Diff line number Diff line change
Expand Up @@ -646,7 +646,7 @@ P = \left[ \begin{array}{rrr} 0 & \phantom{+}1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \e
$$
$$
Q = \left[ \begin{array}{rrr} 1 & \phantom{+}1 & 1 \\ -2 & 1 & 0 \\ 1 & 1 & -1 \end{array} \right]
Q = \left[ \begin{array}{rrr} -1/\sqrt{6} & \phantom{+}1/\sqrt{3} & -1/\sqrt{2} \\ 2/\sqrt{6} & 1/\sqrt{3} & 0\phantom{--} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{array} \right]
$$
```
````
Expand Down Expand Up @@ -683,7 +683,13 @@ Find the weight vectors for the data matrix $X$ representing the points:
```
```{dropdown} Solution
$$
\boldsymbol{w}_1 = \frac{1}{2 \sqrt{20 - 2 \sqrt{10}}} \begin{bmatrix} 6 \\ 2(\sqrt{10} - 1) \end{bmatrix}
$$
$$
\boldsymbol{w}_2 = \frac{1}{2 \sqrt{20 - 2 \sqrt{10}}} \begin{bmatrix} 2(\sqrt{10} - 1) \\ -6 \end{bmatrix}
$$
```
````

Expand All @@ -695,10 +701,6 @@ X^T X = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1.5 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 &
$$
Find all the weight vectors of $X$.
```{dropdown} Solution
```
````

````{div} exercise
Expand All @@ -709,10 +711,6 @@ A(\boldsymbol{x} + \Delta \boldsymbol{x}) = \boldsymbol{b} + \Delta \boldsymbol{
$$
Describe the unit vector $\Delta \boldsymbol{b}$ that will produce the largest change $\| \Delta \boldsymbol{x} \|$.
```{dropdown} Solution
```
````

````{div} exercise
Expand All @@ -729,10 +727,6 @@ A = \left[ \begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{array}
$$
(Note: the columns of $A$ are orthogonal.)
```{dropdown} Solution
```
````

````{div} exercise
Expand All @@ -743,8 +737,4 @@ A_k = \sum_{i=1}^k \sigma_i \boldsymbol{p}_i \boldsymbol{q}_i^T
$$
Describe the singular value decomposition of $A - A_k$.
```{dropdown} Solution
```
````
2 changes: 1 addition & 1 deletion _sources/orthogonality/least_squares.md
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ f_1(t_m) & f_2(t_m) & \cdots & f_n(t_m)
\boldsymbol{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}
$$
We assume that $m \geq n$ and $f_1,\dots,f_n$ are linearly independenty (which implies $\mathrm{rank}(A) = n$). Therefore the vector of coefficients $\boldsymbol{c}$ is the least squares approximation of the system $A \boldsymbol{c} \approx \boldsymbol{y}$.
We assume that $m \geq n$ and $f_1,\dots,f_n$ are linearly independently (which implies $\mathrm{rank}(A) = n$). Therefore the vector of coefficients $\boldsymbol{c}$ is the least squares approximation of the system $A \boldsymbol{c} \approx \boldsymbol{y}$.
```

## Exercises
Expand Down
2 changes: 1 addition & 1 deletion eigenvalues/diagonalization.html
Original file line number Diff line number Diff line change
Expand Up @@ -479,7 +479,7 @@ <h2>Diagonalization<a class="headerlink" href="#id1" title="Permalink to this he
\[
c_A(x) = \pm \prod_{i=1}^k (x - \lambda_i)^{m_i}
\]</div>
<p>where <span class="math notranslate nohighlight">\(\lambda_1, \dots, \lambda_k\)</span> are the <em>distinct</em> eigenvalues of <span class="math notranslate nohighlight">\(A\)</span>. The <strong>algebraic multiplicity</strong> of <span class="math notranslate nohighlight">\(\lambda_i\)</span> is the power <span class="math notranslate nohighlight">\(m_i\)</span> in the factored charactersitic polynomial. In other words, the algebraic multiplicity of <span class="math notranslate nohighlight">\(\lambda_i\)</span> is the number of times <span class="math notranslate nohighlight">\(\lambda_i\)</span> occurs as a root of the characteristic polynomial <span class="math notranslate nohighlight">\(c_A(x)\)</span>.</p>
<p>where <span class="math notranslate nohighlight">\(\lambda_1, \dots, \lambda_k\)</span> are the <em>distinct</em> eigenvalues of <span class="math notranslate nohighlight">\(A\)</span>. The <strong>algebraic multiplicity</strong> of <span class="math notranslate nohighlight">\(\lambda_i\)</span> is the power <span class="math notranslate nohighlight">\(m_i\)</span> in the factored characteristic polynomial. In other words, the algebraic multiplicity of <span class="math notranslate nohighlight">\(\lambda_i\)</span> is the number of times <span class="math notranslate nohighlight">\(\lambda_i\)</span> occurs as a root of the characteristic polynomial <span class="math notranslate nohighlight">\(c_A(x)\)</span>.</p>
</div>
<div class="definition docutils">
<p>Let <span class="math notranslate nohighlight">\(\lambda\)</span> be an eigenvalue of <span class="math notranslate nohighlight">\(A\)</span>. The <strong>geometric multiplicity</strong> of <span class="math notranslate nohighlight">\(\lambda\)</span> is the number of linearly independent eigenvectors corresponding to <span class="math notranslate nohighlight">\(\lambda\)</span>. In other words, the geometric multiplicity is the dimension of the <strong>eigenspace</strong> for <span class="math notranslate nohighlight">\(\lambda\)</span></p>
Expand Down
42 changes: 9 additions & 33 deletions eigenvalues/svd.html
Original file line number Diff line number Diff line change
Expand Up @@ -1002,7 +1002,7 @@ <h2>Exercises<a class="headerlink" href="#exercises" title="Permalink to this he
\end{split}\]</div>
<div class="math notranslate nohighlight">
\[\begin{split}
Q = \left[ \begin{array}{rrr} 1 &amp; \phantom{+}1 &amp; 1 \\ -2 &amp; 1 &amp; 0 \\ 1 &amp; 1 &amp; -1 \end{array} \right]
Q = \left[ \begin{array}{rrr} -1/\sqrt{6} &amp; \phantom{+}1/\sqrt{3} &amp; -1/\sqrt{2} \\ 2/\sqrt{6} &amp; 1/\sqrt{3} &amp; 0\phantom{--} \\ -1/\sqrt{6} &amp; 1/\sqrt{3} &amp; 1/\sqrt{2} \end{array} \right]
\end{split}\]</div>
</div>
</details></div>
Expand Down Expand Up @@ -1054,6 +1054,14 @@ <h2>Exercises<a class="headerlink" href="#exercises" title="Permalink to this he
<div class="sd-summary-up docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-up" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M18.78 15.28a.75.75 0 000-1.06l-6.25-6.25a.75.75 0 00-1.06 0l-6.25 6.25a.75.75 0 101.06 1.06L12 9.56l5.72 5.72a.75.75 0 001.06 0z"></path></svg></div>
</summary><div class="sd-summary-content sd-card-body docutils">
<div class="math notranslate nohighlight">
\[\begin{split}
\boldsymbol{w}_1 = \frac{1}{2 \sqrt{20 - 2 \sqrt{10}}} \begin{bmatrix} 6 \\ 2(\sqrt{10} - 1) \end{bmatrix}
\end{split}\]</div>
<div class="math notranslate nohighlight">
\[\begin{split}
\boldsymbol{w}_2 = \frac{1}{2 \sqrt{20 - 2 \sqrt{10}}} \begin{bmatrix} 2(\sqrt{10} - 1) \\ -6 \end{bmatrix}
\end{split}\]</div>
</div>
</details></div>
<div class="exercise docutils">
Expand All @@ -1063,31 +1071,15 @@ <h2>Exercises<a class="headerlink" href="#exercises" title="Permalink to this he
X^T X = \begin{bmatrix} 2 &amp; 0 &amp; 0 &amp; 0 \\ 0 &amp; 1.5 &amp; 0 &amp; 0 \\ 0 &amp; 0 &amp; 2 &amp; 1 \\ 0 &amp; 0 &amp; 1 &amp; 2 \end{bmatrix}
\end{split}\]</div>
<p>Find all the weight vectors of <span class="math notranslate nohighlight">\(X\)</span>.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3">
<summary class="sd-summary-title sd-card-header">
Solution<div class="sd-summary-down docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-down" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M5.22 8.72a.75.75 0 000 1.06l6.25 6.25a.75.75 0 001.06 0l6.25-6.25a.75.75 0 00-1.06-1.06L12 14.44 6.28 8.72a.75.75 0 00-1.06 0z"></path></svg></div>
<div class="sd-summary-up docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-up" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M18.78 15.28a.75.75 0 000-1.06l-6.25-6.25a.75.75 0 00-1.06 0l-6.25 6.25a.75.75 0 101.06 1.06L12 9.56l5.72 5.72a.75.75 0 001.06 0z"></path></svg></div>
</summary><div class="sd-summary-content sd-card-body docutils">
</div>
</details></div>
<div class="exercise docutils">
<p>Suppose we want to solve a system <span class="math notranslate nohighlight">\(A \boldsymbol{x} = \boldsymbol{b}\)</span>. A small change <span class="math notranslate nohighlight">\(\Delta \boldsymbol{b}\)</span> produces a change in the solution</p>
<div class="math notranslate nohighlight">
\[
A(\boldsymbol{x} + \Delta \boldsymbol{x}) = \boldsymbol{b} + \Delta \boldsymbol{b}
\]</div>
<p>Describe the unit vector <span class="math notranslate nohighlight">\(\Delta \boldsymbol{b}\)</span> that will produce the largest change <span class="math notranslate nohighlight">\(\| \Delta \boldsymbol{x} \|\)</span>.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3">
<summary class="sd-summary-title sd-card-header">
Solution<div class="sd-summary-down docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-down" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M5.22 8.72a.75.75 0 000 1.06l6.25 6.25a.75.75 0 001.06 0l6.25-6.25a.75.75 0 00-1.06-1.06L12 14.44 6.28 8.72a.75.75 0 00-1.06 0z"></path></svg></div>
<div class="sd-summary-up docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-up" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M18.78 15.28a.75.75 0 000-1.06l-6.25-6.25a.75.75 0 00-1.06 0l-6.25 6.25a.75.75 0 101.06 1.06L12 9.56l5.72 5.72a.75.75 0 001.06 0z"></path></svg></div>
</summary><div class="sd-summary-content sd-card-body docutils">
</div>
</details></div>
<div class="exercise docutils">
<p>Find the rank 2 pseudo inverse</p>
<div class="math notranslate nohighlight">
Expand All @@ -1100,31 +1092,15 @@ <h2>Exercises<a class="headerlink" href="#exercises" title="Permalink to this he
A = \left[ \begin{array}{rrr} 1 &amp; 1 &amp; 1 \\ 1 &amp; 0 &amp; -2 \\ 1 &amp; -1 &amp; 1 \end{array} \right]
\end{split}\]</div>
<p>(Note: the columns of <span class="math notranslate nohighlight">\(A\)</span> are orthogonal.)</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3">
<summary class="sd-summary-title sd-card-header">
Solution<div class="sd-summary-down docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-down" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M5.22 8.72a.75.75 0 000 1.06l6.25 6.25a.75.75 0 001.06 0l6.25-6.25a.75.75 0 00-1.06-1.06L12 14.44 6.28 8.72a.75.75 0 00-1.06 0z"></path></svg></div>
<div class="sd-summary-up docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-up" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M18.78 15.28a.75.75 0 000-1.06l-6.25-6.25a.75.75 0 00-1.06 0l-6.25 6.25a.75.75 0 101.06 1.06L12 9.56l5.72 5.72a.75.75 0 001.06 0z"></path></svg></div>
</summary><div class="sd-summary-content sd-card-body docutils">
</div>
</details></div>
<div class="exercise docutils">
<p>Let <span class="math notranslate nohighlight">\(A\)</span> be a <span class="math notranslate nohighlight">\(m \times n\)</span> matrix with singular value decomposition <span class="math notranslate nohighlight">\(A = P \Sigma Q^T\)</span>. Let <span class="math notranslate nohighlight">\(k &lt; \min\{m,n\}\)</span> and let</p>
<div class="math notranslate nohighlight">
\[
A_k = \sum_{i=1}^k \sigma_i \boldsymbol{p}_i \boldsymbol{q}_i^T
\]</div>
<p>Describe the singular value decomposition of <span class="math notranslate nohighlight">\(A - A_k\)</span>.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3">
<summary class="sd-summary-title sd-card-header">
Solution<div class="sd-summary-down docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-down" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M5.22 8.72a.75.75 0 000 1.06l6.25 6.25a.75.75 0 001.06 0l6.25-6.25a.75.75 0 00-1.06-1.06L12 14.44 6.28 8.72a.75.75 0 00-1.06 0z"></path></svg></div>
<div class="sd-summary-up docutils">
<svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-up" viewBox="0 0 24 24" aria-hidden="true"><path fill-rule="evenodd" d="M18.78 15.28a.75.75 0 000-1.06l-6.25-6.25a.75.75 0 00-1.06 0l-6.25 6.25a.75.75 0 101.06 1.06L12 9.56l5.72 5.72a.75.75 0 001.06 0z"></path></svg></div>
</summary><div class="sd-summary-content sd-card-body docutils">
</div>
</details></div>
</section>
</section>

Expand Down
3 changes: 3 additions & 0 deletions notebooks/01_linear_systems.html
Original file line number Diff line number Diff line change
Expand Up @@ -647,6 +647,9 @@ <h2>Example: Resistor Network<a class="headerlink" href="#example-resistor-netwo
[ 5.]]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</section>
Expand Down
2 changes: 1 addition & 1 deletion notebooks/03_polynomial_interpolation.html
Original file line number Diff line number Diff line change
Expand Up @@ -612,7 +612,7 @@ <h2>Example 4<a class="headerlink" href="#example-4" title="Permalink to this he
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/54bb25a1f17bf5554019184852d34ee28ad5f99c1117d0ea764da6ce104fa526.png" src="../_images/54bb25a1f17bf5554019184852d34ee28ad5f99c1117d0ea764da6ce104fa526.png" />
<img alt="../_images/d2617a8cd6660d08b687e3d6e916943125722408d2d59dc7c17754ad0213d61a.png" src="../_images/d2617a8cd6660d08b687e3d6e916943125722408d2d59dc7c17754ad0213d61a.png" />
</div>
</div>
<p>Yikes! The interpolating polynomial is very sensitive to small changes in the <span class="math notranslate nohighlight">\(y\)</span> values! That’s because the condition number is large!</p>
Expand Down
4 changes: 2 additions & 2 deletions notebooks/04_spline_interpolation.html
Original file line number Diff line number Diff line change
Expand Up @@ -573,7 +573,7 @@ <h2>Example 2<a class="headerlink" href="#example-2" title="Permalink to this he
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/ebaa181f0a491915b4a182951689878b55fd9d8a157318580da19340cef54bb3.png" src="../_images/ebaa181f0a491915b4a182951689878b55fd9d8a157318580da19340cef54bb3.png" />
<img alt="../_images/21eb4f509f3b727e26d3294cd8fff95754db5b33c22e386509b51c01827dc09b.png" src="../_images/21eb4f509f3b727e26d3294cd8fff95754db5b33c22e386509b51c01827dc09b.png" />
</div>
</div>
</section>
Expand All @@ -596,7 +596,7 @@ <h2>Example 3<a class="headerlink" href="#example-3" title="Permalink to this he
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/be07c30fb36dec62e097c15d9f147389f1c73bf98ae0f6713df75f14c9c42c24.png" src="../_images/be07c30fb36dec62e097c15d9f147389f1c73bf98ae0f6713df75f14c9c42c24.png" />
<img alt="../_images/d626bc8f20d529cbdcebf5fc719e1121722e2867b111f9416301d294aab9971c.png" src="../_images/d626bc8f20d529cbdcebf5fc719e1121722e2867b111f9416301d294aab9971c.png" />
</div>
</div>
<p>The cubic spline is not sensitive to small changes in the <span class="math notranslate nohighlight">\(y\)</span> values.</p>
Expand Down
22 changes: 11 additions & 11 deletions notebooks/06_least_squares_regression.html
Original file line number Diff line number Diff line change
Expand Up @@ -515,7 +515,7 @@ <h3>Example: Fake Noisy Linear Data<a class="headerlink" href="#example-fake-noi
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/08bf16d0256fd00d974981c82262b1a64a1b49b81242f48c85e9723bef01aa63.png" src="../_images/08bf16d0256fd00d974981c82262b1a64a1b49b81242f48c85e9723bef01aa63.png" />
<img alt="../_images/f2bd79cd55d4411f9fae6e4a734a1641613b71e06b9357f77bfb516cc855f9fa.png" src="../_images/f2bd79cd55d4411f9fae6e4a734a1641613b71e06b9357f77bfb516cc855f9fa.png" />
</div>
</div>
<p>Let’s use linear regression to retrieve the coefficients <span class="math notranslate nohighlight">\(c_0\)</span> and <span class="math notranslate nohighlight">\(c_1\)</span>. Construct the matrix <span class="math notranslate nohighlight">\(A\)</span>:</p>
Expand All @@ -540,11 +540,11 @@ <h3>Example: Fake Noisy Linear Data<a class="headerlink" href="#example-fake-noi
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>array([[1. , 0.10130289],
[1. , 0.22893098],
[1. , 0.90785401],
[1. , 0.8108834 ],
[1. , 0.1710018 ]])
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>array([[1. , 0.58343377],
[1. , 0.75391049],
[1. , 0.80513638],
[1. , 0.93628357],
[1. , 0.85067217]])
</pre></div>
</div>
</div>
Expand All @@ -558,7 +558,7 @@ <h3>Example: Fake Noisy Linear Data<a class="headerlink" href="#example-fake-noi
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[ 6.99569694 -4.00073615]
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[ 6.95249672 -3.90471848]
</pre></div>
</div>
</div>
Expand All @@ -575,7 +575,7 @@ <h3>Example: Fake Noisy Linear Data<a class="headerlink" href="#example-fake-noi
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/b3bb4cb64631a51c9de1b8211c32ef9f4ba0367b81f02b960574abc663441bc6.png" src="../_images/b3bb4cb64631a51c9de1b8211c32ef9f4ba0367b81f02b960574abc663441bc6.png" />
<img alt="../_images/975c3a72088dd27d21d8d35eeef41e1343eb97c272bf30f1f121395bfd2dd511.png" src="../_images/975c3a72088dd27d21d8d35eeef41e1343eb97c272bf30f1f121395bfd2dd511.png" />
</div>
</div>
</section>
Expand Down Expand Up @@ -643,7 +643,7 @@ <h3>Example: Fake Noisy Quadratic Data<a class="headerlink" href="#example-fake-
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/78abacec3b487e958d2ea2afa313dc943b288bf8c0af650d9a1ab136c17ebe6e.png" src="../_images/78abacec3b487e958d2ea2afa313dc943b288bf8c0af650d9a1ab136c17ebe6e.png" />
<img alt="../_images/b68652521a8b4da67d5745351536e402bdaed4a488e228f9c7f081726969cd65.png" src="../_images/b68652521a8b4da67d5745351536e402bdaed4a488e228f9c7f081726969cd65.png" />
</div>
</div>
<p>Construct the matrix <span class="math notranslate nohighlight">\(A\)</span>:</p>
Expand Down Expand Up @@ -674,7 +674,7 @@ <h3>Example: Fake Noisy Quadratic Data<a class="headerlink" href="#example-fake-
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/98583080a1bfdda8593d1c60057fbded515efebacc14737567fd85f59e87f31d.png" src="../_images/98583080a1bfdda8593d1c60057fbded515efebacc14737567fd85f59e87f31d.png" />
<img alt="../_images/ad0a50622eb742a99bf52ab0594ef0c59e9efc146361c0ee76191b085f0d1ad5.png" src="../_images/ad0a50622eb742a99bf52ab0594ef0c59e9efc146361c0ee76191b085f0d1ad5.png" />
</div>
</div>
<p>Let’s solve again but this time we use the QR decomposition:</p>
Expand All @@ -699,7 +699,7 @@ <h3>Example: Fake Noisy Quadratic Data<a class="headerlink" href="#example-fake-
</div>
</div>
<div class="cell_output docutils container">
<img alt="../_images/98583080a1bfdda8593d1c60057fbded515efebacc14737567fd85f59e87f31d.png" src="../_images/98583080a1bfdda8593d1c60057fbded515efebacc14737567fd85f59e87f31d.png" />
<img alt="../_images/ad0a50622eb742a99bf52ab0594ef0c59e9efc146361c0ee76191b085f0d1ad5.png" src="../_images/ad0a50622eb742a99bf52ab0594ef0c59e9efc146361c0ee76191b085f0d1ad5.png" />
</div>
</div>
</section>
Expand Down
Loading

0 comments on commit e57778c

Please sign in to comment.