Skip to content

Commit

Permalink
deploy: 4e0d6a2
Browse files Browse the repository at this point in the history
  • Loading branch information
trevorcampbell committed Nov 13, 2023
1 parent c76fa31 commit 60107c6
Show file tree
Hide file tree
Showing 15 changed files with 784 additions and 784 deletions.
26 changes: 13 additions & 13 deletions pull313/_sources/classification2.md
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ we call the `seed` function from the `numpy` package, and pass it any integer as
Below we use the seed number `1`. At
that point, Python will keep track of the randomness that occurs throughout the code.
For example, we can call the `sample` method
on the series of numbers, passing the argument `n = 10` to indicate that we want 10 samples.
on the series of numbers, passing the argument `n=10` to indicate that we want 10 samples.

```{code-cell} ipython3
import numpy as np
Expand All @@ -290,7 +290,7 @@ np.random.seed(1)
nums_0_to_9 = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
random_numbers1 = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers1 = nums_0_to_9.sample(n=10).to_numpy()
random_numbers1
```
You can see that `random_numbers1` is a list of 10 numbers
Expand All @@ -299,7 +299,7 @@ we run the `sample` method again,
we will get a fresh batch of 10 numbers that also look random.

```{code-cell} ipython3
random_numbers2 = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers2 = nums_0_to_9.sample(n=10).to_numpy()
random_numbers2
```

Expand All @@ -309,12 +309,12 @@ as before---and then call the `sample` method again.

```{code-cell} ipython3
np.random.seed(1)
random_numbers1_again = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers1_again = nums_0_to_9.sample(n=10).to_numpy()
random_numbers1_again
```

```{code-cell} ipython3
random_numbers2_again = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers2_again = nums_0_to_9.sample(n=10).to_numpy()
random_numbers2_again
```

Expand All @@ -326,12 +326,12 @@ obtain a different sequence of random numbers.

```{code-cell} ipython3
np.random.seed(4235)
random_numbers = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers = nums_0_to_9.sample(n=10).to_numpy()
random_numbers
```

```{code-cell} ipython3
random_numbers = nums_0_to_9.sample(n = 10).to_numpy()
random_numbers = nums_0_to_9.sample(n=10).to_numpy()
random_numbers
```

Expand Down Expand Up @@ -378,15 +378,15 @@ functions. Those functions will then use your `RandomState` to generate random n
`numpy`'s default generator. For example, we can reproduce our earlier example by using a `RandomState`
object with the `seed` value set to 1; we get the same lists of numbers once again.
```{code}
rnd = np.random.RandomState(seed = 1)
random_numbers1_third = nums_0_to_9.sample(n = 10, random_state = rnd).to_numpy()
rnd = np.random.RandomState(seed=1)
random_numbers1_third = nums_0_to_9.sample(n=10, random_state=rnd).to_numpy()
random_numbers1_third
```
```{code}
array([2, 9, 6, 4, 0, 3, 1, 7, 8, 5])
```
```{code}
random_numbers2_third = nums_0_to_9.sample(n = 10, random_state = rnd).to_numpy()
random_numbers2_third = nums_0_to_9.sample(n=10, random_state=rnd).to_numpy()
random_numbers2_third
```
```{code}
Expand Down Expand Up @@ -540,8 +540,8 @@ cancer_train["Class"].value_counts(normalize=True)
```{code-cell} ipython3
:tags: [remove-cell]
glue("cancer_train_b_prop", "{:0.0f}".format(cancer_train["Class"].value_counts(normalize = True)["Benign"]*100))
glue("cancer_train_m_prop", "{:0.0f}".format(cancer_train["Class"].value_counts(normalize = True)["Malignant"]*100))
glue("cancer_train_b_prop", "{:0.0f}".format(cancer_train["Class"].value_counts(normalize=True)["Benign"]*100))
glue("cancer_train_m_prop", "{:0.0f}".format(cancer_train["Class"].value_counts(normalize=True)["Malignant"]*100))
```

### Preprocess the data
Expand Down Expand Up @@ -1620,7 +1620,7 @@ for i in range(len(ks)):
cancer_tune_pipe = make_pipeline(cancer_preprocessor, KNeighborsClassifier())
param_grid = {
"kneighborsclassifier__n_neighbors": range(1, 21),
} ## double check: in R textbook, it is tune_grid(..., grid = 20), so I guess it matches RandomizedSearchCV
} ## double check: in R textbook, it is tune_grid(..., grid=20), so I guess it matches RandomizedSearchCV
## instead of GridSeachCV?
# param_grid_rand = {
# "kneighborsclassifier__n_neighbors": range(1, 100),
Expand Down
8 changes: 4 additions & 4 deletions pull313/_sources/clustering.md
Original file line number Diff line number Diff line change
Expand Up @@ -182,10 +182,10 @@ in the clustering pipeline.
```{code-cell} ipython3
:tags: [remove-cell]
penguins_standardized = penguins.assign(
bill_length_standardized = (penguins["bill_length_mm"] - penguins["bill_length_mm"].mean())/penguins["bill_length_mm"].std(),
flipper_length_standardized = (penguins["flipper_length_mm"] - penguins["flipper_length_mm"].mean())/penguins["flipper_length_mm"].std()
bill_length_standardized=(penguins["bill_length_mm"] - penguins["bill_length_mm"].mean())/penguins["bill_length_mm"].std(),
flipper_length_standardized=(penguins["flipper_length_mm"] - penguins["flipper_length_mm"].mean())/penguins["flipper_length_mm"].std()
).drop(
columns = ["bill_length_mm", "flipper_length_mm"]
columns=["bill_length_mm", "flipper_length_mm"]
)
```

Expand Down Expand Up @@ -261,7 +261,7 @@ kmeans = KMeans(n_clusters=3)
penguin_clust = kmeans.fit(penguins_standardized)
penguins_clustered = penguins_standardized.assign(cluster = penguin_clust.labels_)
penguins_clustered = penguins_standardized.assign(cluster=penguin_clust.labels_)
colored_scatter_plot = alt.Chart(penguins_clustered).mark_circle().encode(
x=alt.X("flipper_length_standardized", title="Flipper Length (standardized)"),
Expand Down
4 changes: 2 additions & 2 deletions pull313/_sources/inference.md
Original file line number Diff line number Diff line change
Expand Up @@ -716,9 +716,9 @@ glue(
x="mean(price)"
),
base.mark_text(align="left", color="#f58518", size=12, fontWeight="bold", dx=10).transform_aggregate(
mean_price = "mean(price)",
mean_price="mean(price)",
).transform_calculate(
label = "'Mean = ' + round(datum.mean_price * 10) / 10"
label="'Mean = ' + round(datum.mean_price * 10) / 10"
).encode(
x=alt.X("mean_price:Q", title="Sample mean price per night (dollars)"),
y=alt.value(10),
Expand Down
8 changes: 4 additions & 4 deletions pull313/_sources/regression1.md
Original file line number Diff line number Diff line change
Expand Up @@ -833,8 +833,8 @@ from sklearn.metrics import mean_squared_error
sacramento_test["predicted"] = sacr_gridsearch.predict(sacramento_test)
RMSPE = mean_squared_error(
y_true = sacramento_test["price"],
y_pred = sacramento_test["predicted"]
y_true=sacramento_test["price"],
y_pred=sacramento_test["predicted"]
)**(1/2)
RMSPE
```
Expand Down Expand Up @@ -1066,8 +1066,8 @@ to compute the RMSPE.
```{code-cell} ipython3
sacramento_test["predicted"] = sacr_gridsearch.predict(sacramento_test)
RMSPE_mult = mean_squared_error(
y_true = sacramento_test["price"],
y_pred = sacramento_test["predicted"]
y_true=sacramento_test["price"],
y_pred=sacramento_test["predicted"]
)**(1/2)
RMSPE_mult
Expand Down
8 changes: 4 additions & 4 deletions pull313/_sources/regression2.md
Original file line number Diff line number Diff line change
Expand Up @@ -440,8 +440,8 @@ sacramento_test["predicted"] = lm.predict(sacramento_test[["sqft"]])
# calculate RMSPE
RMSPE = mean_squared_error(
y_true = sacramento_test["price"],
y_pred = sacramento_test["predicted"]
y_true=sacramento_test["price"],
y_pred=sacramento_test["predicted"]
)**(1/2)
RMSPE
Expand Down Expand Up @@ -734,8 +734,8 @@ Finally, we make predictions on the test data set to assess the quality of our m
sacramento_test["predicted"] = mlm.predict(sacramento_test[["sqft","beds"]])
lm_mult_test_RMSPE = mean_squared_error(
y_true = sacramento_test["price"],
y_pred = sacramento_test["predicted"]
y_true=sacramento_test["price"],
y_pred=sacramento_test["predicted"]
)**(1/2)
lm_mult_test_RMSPE
```
Expand Down
204 changes: 102 additions & 102 deletions pull313/classification1.html

Large diffs are not rendered by default.

Loading

0 comments on commit 60107c6

Please sign in to comment.