Skip to content

SpreadSheets600/Spectrum-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spectrum Analysis

Analyze spectrum data captured from a live video feed. This program captures video frames and extracts spectral information.

Table of Contents

Modules Needed

import math 
import os

import tkinter as tk
import tkinter.font as tkFont

from tkinter import *
from tkinter import ttk

import cv2

import matplotlib.image as img
import matplotlib.patches as mpatches

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image, ImageTk

Modules TO Be Installed

Module Installation Command
numpy pip install numpy
opencv-python pip install opencv-python
matplotlib pip install matplotlib
Pillow pip install Pillow
tkinter ( Included With Python )

Main Code

def capture():
    """
    Capture video frames from the default camera.

    Returns:
        list: A list of intensity values representing the captured frame.
    """
    global rlable

    cap = cv2.VideoCapture(0)

    roi_selected = False

    while True:
        ret, frame = cap.read()

        k = cv2.waitKey(1)

        if k & 0xFF == ord("s") and roi_selected == True:
            shape = cropped.shape
            r_dist = []
            b_dist = []
            g_dist = []
            i_dist = []
            for i in range(shape[1]):
                r_val = np.mean(cropped[:, i][:, 0])
                b_val = np.mean(cropped[:, i][:, 1])
                g_val = np.mean(cropped[:, i][:, 2])
                i_val = (r_val + b_val + g_val) / 3

                r_dist.append(r_val)
                g_dist.append(g_val)
                b_dist.append(b_val)
                i_dist.append(i_val)

        elif k & 0xFF == ord("r"):
            r = cv2.selectROI(frame)
            roi_selected = True

        elif k & 0xFF == ord("q"):
            break

        else:
            if roi_selected:
                cropped = frame[
                    int(r[1]): int(r[1] + r[3]), int(r[0]): int(r[0] + r[2])
                ]
                cv2.imshow("ROI", cropped)
            else:
                cv2.imshow("FRAME", frame)

    cap.release()
    cv2.destroyAllWindows()
    return i_dist


# Define a function to normalize a spectrum
def normalise(spectrumIn):
    """
    Normalize a spectrum by dividing all values by the maximum value.

    Args:
        spectrumIn (list): List of intensity values.

    Returns:
        list: Normalized spectrum.
    """
    spectrumOut = []

    maxPoint = max(spectrumIn)

    for value in spectrumIn:
        spectrumOut.append(value / maxPoint)

    return spectrumOut


# Define a function to calculate transmittance
def transmittance(reference, sample):
    """
    Calculate transmittance from a sample spectrum and a reference spectrum.

    Args:
        reference (list): Reference spectrum.
        sample (list): Sample spectrum.

    Returns:
        list: Transmittance values.
    """
    transmittance = []

    for i in range(len(sample)):
        if sample[i] == 0:  # This 'If' Is To Avoid Division By Zero Error
            transmittance.append(0)
        else:
            transmittance.append(sample[i] / reference[i])

    return transmittance


# Define a function to calculate absorbance
def absorbance(reference, sample):
    """
    Calculate absorbance from a sample spectrum and a reference spectrum.

    Args:
        reference (list): Reference spectrum.
        sample (list): Sample spectrum.

    Returns:
        list: Absorbance values.
    """
    absorbance = []

    for i in range(len(sample)):
        if sample[i] == 0:  # This 'If' Is To Avoid Division By Zero Error
            absorbance.append(0)
        else:
            absorbance.append(-math.log(sample[i] / reference[i], 10) / 5)

    return absorbance


# Define a function to calculate reflectance
def reflectance(reference, sample):
    """
    Calculate reflectance from a sample spectrum and a reference spectrum.

    Args:
        reference (list): Reference spectrum.
        sample (list): Sample spectrum.

    Returns:
        list: Reflectance values.
    """
    reflectance = []

    for i in range(len(sample)):
        if sample[i] == 0:  # This 'If' Is To Avoid Division By Zero Error
            reflectance.append(0)
        else:
            reflectance.append(
                1
                - (sample[i] / reference[i])
                + (-math.log(sample[i] / reference[i], 10) / 5)
            )

    return reflectance

pixel = [115, 146, 193, 250, 312, 329, 404]
wavelength = [405.4, 436.6, 487.7, 546.5, 611.6, 631.1, 708]
reference = [  # Your reference data
    # ...
]

# Code for data processing using the defined functions

Usage

  1. Install the required modules (if not already installed) using pip:

    pip install numpy opencv-python matplotlib Pillow
  2. Run the script to capture and process spectral data.

    python Spectroscope.py
  3. Follow on-screen instructions to capture and analyze the data.

Functions

  • capture(): Captures and processes live video frames.
  • normalise(spectrumIn): Normalizes spectral data.
  • transmittance(reference, sample): Calculates transmittance.
  • absorbance(reference, sample): Calculates absorbance.
  • reflectance(reference, sample): Calculates reflectance.

About

A Python Application For Spectrum Analysis

Resources

Stars

Watchers

Forks