Skip to content

SD3004/spatio-temporal-fmri-analysis

Repository files navigation

Spatio-Temporal Deep Learning for fMRI analysis

Dataset

alt text

Tensorboard

To visualise experiments logs in tensorbard run the following line:

tensorboard --logdir='./logs/'

Docker

docker build ./config

docker run -it --rm --env CUDA_VISIBLE_DEVICE=0 --gpus all -v /home/sd20/workspace:/workspace -v /home/sd20/workspace/data:/data/ --workdir=/workspace stgcn

docker tag 267a0d195121 stgcn

Useful Links

ST-GCN - Gadgil et al 2020, Spatio-Temporal Graph Convolution for Functional MRI Analysis

MS-G3D - Liu et al 2020, Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition

Results

Sex classification

Multi-layer Perceptron (MLP) classifier

Model Data Input Features Architecture Train-accuracy Validation-accuracy Remarks
ST-GCN cov matrix - 22 ROIs 253 (64,64,1) 0.828 0.752 5-folds average, SGD 1e-2
ours ICA15 105 (64,64,1) 1.00 0.847 dropout 0.5, Adam 1e-4
ours ICA25 300 (64,64,1) 1.00 0.835 same
ours ICA50 1225 (64,64,1) 1.00 0.902 same
ours ICA100 4950 (64,64,1) 1.00 0.961 same
ours ICA200 19900 (64,64,1) 1.00 0.957 same
ours ICA300 44850 (64,64,1) 1.00 0.968 same

Graph Convolution Networks (GCN) classifiers

All results are obtained following a 5-fold cross validation

Model Data Accuracy % (paper) Batch size Iterations Time Window Remarks
ST-GCN 22 ROIs 81.8 (83.7) 5-folds average, SGD 1e-2 xxx 128 xxx
MS-G3D 22 ROIs 84.7 dropout 0.5, Adam 1e-4 xxx 50 xxx
MS-G3D 22 ROIs 83.0 dropout 0.0, Adam 1e-3 128 5k scale 2, scale 2
Model Data Accuracy % Batch size Iterations Time Window Remarks
ST-GCN Nodes TS - 15 79.8 512 10k 50 Adam, 1e-3
ST-GCN Nodes TS - 15 75.9 512 2k 50 Adam, 1e-3
ST-GCN Nodes TS - 15 76.7 512 2k 75 Adam, 1e-3
ST-GCN Nodes TS - 15 76.6 512 2k 100 Adam, 1e-3
ST-GCN Nodes TS - 25 82.1 512 10k 50 Adam, 1e-3
ST-GCN Nodes TS - 25 78.3 512 2k 50 Adam, 1e-3
ST-GCN Nodes TS - 25 79.8 512 2k 75 Adam, 1e-3
ST-GCN Nodes TS - 25 77.8 512 2k 100 Adam, 1e-3
ST-GCN Nodes TS - 25 76.5 512 2k 128 Adam, 1e-3
ST-GCN Nodes TS - 50 86.5 512 10k 50 Adam, 1e-3
ST-GCN Nodes TS - 50 82.4 512 2k 50 Adam, 1e-3
ST-GCN Nodes TS - 50 81.6 512 2k 75 Adam, 1e-3
ST-GCN Nodes TS - 50 79.6 512 2k 100 Adam, 1e-3
ST-GCN Nodes TS - 100 82.6 256 2k 50 Adam, 1e-3
ST-GCN Nodes TS - 200 89.2 256 2k 50 Adam, 1e-3
ST-GCN Nodes TS - 200 91.5 256 10k 50 Adam, 1e-3
ST-GCN Nodes TS - 300 87.2 128 2k 50 Adam, 1e-3
Model Data Accuracy % Batch size Iterations Time Window Remarks
MS-G3D Nodes TS - 15 59.1 256 2k 10 Adam, 1e-3
MS-G3D Nodes TS - 15 80.0 256 2k 50 Adam, 1e-3
MS-G3D Nodes TS - 15 80.1 256 2k 75 Adam, 1e-3
MS-G3D Nodes TS - 15 81.5 128 2k 100 Adam, 1e-3
MS-G3D Nodes TS - 25 84.7 256 2k 50 Adam, 1e-3
MS-G3D Nodes TS - 25 85.2 128 2k 75 Adam, 1e-3
MS-G3D Nodes TS - 25 85.1 64 2k 100 Adam, 1e-3
MS-G3D Nodes TS - 25 86.1 64 5k 100 Adam, 1e-3
MS-G3D Nodes TS - 25 85.9 64 2k 128 Adam, 1e-3
MS-G3D Nodes TS - 25 84.3 256 2k 50 Adam, 1e-3, scale g3d 4, scale gcn 4
MS-G3D Nodes TS - 25 84.6 256 2k 50 Adam, 1e-3, scale g3d 1, scale gcn 1
MS-G3D Nodes TS - 50 89.5 64 2k 50 Adam, 1e-3, scale g3d 8, scale gcn 18
MS-G3D Nodes TS - 50 89.3 64 2k 75 Adam, 1e-3
MS-G3D Nodes TS - 50 89.7 32 2k 100 Adam, 1e-3
MS-G3D Nodes TS - 50 90.9 32 10k 100 Adam, 1e-3
MS-G3D Nodes TS - 50 87.9 64 2k 50 Adam, 1e-3, scale g3d 4, scale gcn 1
MS-G3D Nodes TS - 50 89 64 2k 50 Adam, 1e-3, scale g3d 1, scale gcn 1
MS-G3D Nodes TS - 50 87.5 64 2k 50 Adam, 1e-3, scale g3d 1, scale gcn 1 , ws=1
MS-G3D Nodes TS - 100 92.2 256 2k 50 Adam, 1e-3
MS-G3D Nodes TS - 100 93.9 32 10k 50 Adam, 1e-3
MS-G3D-light Nodes TS - 200 94.4 128 2k 50 Adam, 1e-3, scale 1

Fluid intelligence prediction

Train-accuracy Validation-accuracy
ICA15 xxx xxx
ICA25 xxx xxx
ICA50 xxx xxx
ICA100 xxx xxx
ICA200 xxx xxx
ICA300 xxx xxx
Model Data Correlation % Batch size Iterations Time Window Remarks
MS-G3D Nodes TS - 15 28.6 256 2k 100 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 15 24.1 256 2k 75 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 15 26.7 512 2k 50 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 25 30.6 64 2k 128 Adam, 1e-3, scale 8
MS-G3D Nodes TS - 25 28.6 128 2k 100 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 25 28.0 256 2k 75 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 25 31.3 256 2k 50 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 25 0.0714 256 2k 50 new
MS-G3D Nodes TS - 50 32.5 64 2k 50 Adam, 1e-3, dropout 0.5, scale 8
MS-G3D Nodes TS - 50 30.7 128 2k 50 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 50 28.5 128 2k 75 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 50 30.2 64 2k 100 Adam, 1e-3, dropout 0, scale 2
MS-G3D Nodes TS - 100 31.7 32 2k 50 Adam, 1e-3, scale 8
MS-G3D Nodes TS - 100 31.3 64 2k 50 Adam, 1e-3, dropout 0, scale 2
MS-G3D-light Nodes TS - 200 32.4 16 2k 50 Adam, 1e-3, scale 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages