Skip to content

Commit

Permalink
docs: proper latex in docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
giannipetrella committed Jul 19, 2024
1 parent a2e8b7e commit fe98116
Showing 1 changed file with 25 additions and 22 deletions.
47 changes: 25 additions & 22 deletions src/moduli.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ end
is_coprime(M::QuiverModuli)
Checks if the stability parameter is coprime with the dimension vector,
i.e., if for all subdimension vectors `e` of `d`, \$\\theta\\cdot e \\neq 0\$.
i.e., if for all subdimension vectors ``e`` of ``d``, ``\\theta\\cdot e \\neq 0``.
INPUT:
- `M::QuiverModuli`: a moduli space or stack of representations of a quiver.
Expand Down Expand Up @@ -588,7 +588,7 @@ function solve(A, b)
end

"""
Cardinality of general linear group \$\\mathrm{GL}_n(\\mathbb{F}_v)\$.
Cardinality of general linear group ``\\mathrm{GL}_n(\\mathbb{F}_v)``.
"""
@memoize Dict function CardinalGl(n::Int, q)
if n == 0
Expand All @@ -599,7 +599,7 @@ Cardinality of general linear group \$\\mathrm{GL}_n(\\mathbb{F}_v)\$.
end

"""
Cardinality of representation space \$\\mathrm{R}(Q,d)\$, over \$\\mathbb{F}_q\$.
Cardinality of representation space ``\\mathrm{R}(Q,d), over \\mathbb{F}_q``.
"""
function CardinalRd(Q::Quiver, d::AbstractVector{Int}, q)
return q^sum(
Expand All @@ -609,14 +609,17 @@ function CardinalRd(Q::Quiver, d::AbstractVector{Int}, q)
end

"""
Cardinality of product of general linear groups \$\\mathrm{GL}_{d}(\\mathbb{F}_q)\$.
Cardinality of product of general linear groups ``\\mathrm{GL}_{d}(\\mathbb{F}_q)``.
"""
@memoize Dict function CardinalGd(d::AbstractVector{Int}, q)
return prod(CardinalGl(di, q) for di in d)
end


"""Entry of the transfer matrix, as per Corollary 6.9"""
"""
Entry of the transfer matrix, as per Corollary 6.9 of
[MR1974891](https://doi.org/10.1007/s00222-002-0273-4)
"""
function TransferMatrixEntry(Q, e, f, q)
fe = f - e

Expand Down Expand Up @@ -853,8 +856,8 @@ end
Returns the index of the moduli space ``M``.
The index of a variety \$X\$ is the largest which divides the canonical divisor \$K_X\$
in \$Pic(X)\$.
The index of a variety ``X`` is the largest which divides
the canonical divisor ``K_X`` in ``Pic(X)``.
This implementation currently only works for the canonical stability.
Expand Down Expand Up @@ -1014,7 +1017,6 @@ function Poincare_polynomial(M::QuiverModuliSpace)
end


# oh my god
function power(x, n::Int)
if n >= 0
return x^n
Expand Down Expand Up @@ -1043,7 +1045,7 @@ INPUT:
- ``denom``: a function. Default is the sum.
OUTPUT:
- The motive as an element in the function field \$\\mathbb{Q}(L)\$.
- The motive as an element in the function field \\mathbb{Q}(L).
EXAMPLES:
Expand Down Expand Up @@ -1151,7 +1153,7 @@ end
Computes the Chow ring of the moduli space of ``\\theta``-semistable representations of
``Q`` with dimension vector ``d``, for a choice of linearization ``a``.
This method of the function Chow_ring also returns the ambient ring \$R\$
This method of the function Chow_ring also returns the ambient ring ``R``
and the inclusion morphism.
INPUT:
Expand All @@ -1164,7 +1166,7 @@ OUTPUT:
A tuple containing:
- the Chow ring of the moduli space,
- the polynomial ring above it,
- the inclusion map \$\\iota : A \\to R\$.
- the inclusion map ``\\iota : A \\to R``.
EXAMPLES:
Expand Down Expand Up @@ -1366,7 +1368,7 @@ end
Returns the first Chern class of the line bundle L(eta).
This is given by \$L(eta) = \\bigoplus_{i \\in Q_0} \\det(U_i)^{-eta_i}\$.
This is given by ``L(eta) = \\bigoplus_{i \\in Q_0} \\det(U_i)^{-eta_i}``.
INPUT:
- ``M``: a moduli space of representations of a quiver.
Expand All @@ -1377,7 +1379,7 @@ OUTPUT:
EXAMPLES:
The line bundles \$\\mathcal{O}(i)\$ on the projective line:
The line bundles ``\\mathcal{O}(i)`` on the projective line:
```jldoctest
julia> Q = mKronecker_quiver(2); M = QuiverModuliSpace(Q, [1, 1]);
Expand Down Expand Up @@ -1447,15 +1449,15 @@ end
"""
total_Chern_class_universal(M::QuiverModuliSpace, i, chi)
Returns the total Chern class of the universal bundle \$U_i(\\chi)\$.
Returns the total Chern class of the universal bundle ``U_i(\\chi)``.
INPUT:
- ``M``: a moduli space of representations of a quiver.
- ``i``: the universal bundle we want the Chern class of.
- ``chi``: a choice of linearization to construct \$U_i(\\chi)\$.
- ``chi``: a choice of linearization to construct ``U_i(\\chi)``.
OUTPUT:
- the total Chern class of the universal bundle \$U_i(\\chi)\$.
- the total Chern class of the universal bundle ``U_i(\\chi)``.
EXAMPLES:
Expand Down Expand Up @@ -1561,7 +1563,7 @@ julia> Todd_class(M)
)

"""
We call the series \$Q(t) = t/(1-e^{-t})\$ the Todd generating series.
We call the series ``Q(t) = t/(1-e^{-t})`` the Todd generating series.
The function computes the terms of this series up to degree n.
We use this instead of the more conventional notation `Q` to avoid a
clash with the notation for the quiver.
Expand Down Expand Up @@ -1620,7 +1622,8 @@ julia> Todd_class(M)
num = gens(preimage(inclusion, Ideal(R, num)))[1]
den = gens(preimage(inclusion, Ideal(R, den)))[1]

# renormalizing the constant term because Singular is silly like that
# renormalizing the constant term because it should be 1, but Singular does not keep
# it fixed.
num /= constant_coefficient(num)
den /= constant_coefficient(den)

Expand Down Expand Up @@ -1648,7 +1651,7 @@ the integral of `f`.
EXAMPLES:
The integral of \$\\mathcal{O}(i)\$ on the projective line for some `i`s.
The integral of ``\\mathcal{O}(i)`` on the projective line for some `i`s.
```jldoctest
julia> Q = mKronecker_quiver(2); M = QuiverModuliSpace(Q, [1, 1]);
Expand Down Expand Up @@ -1736,8 +1739,8 @@ Returns the "pseudodegree" of the monomial `f` in the Chow ring of the moduli
space `M` passed.
This method is unsafe, as it does not consider the actual degree of the MPolyRingElem
objects passed. Instead, it assumes that the Chow ring passed has variables \$x_{i, j}\$
as in the Chow ring paper.
objects passed. Instead, it assumes that the Chow ring passed has variables
``x_{i, j}`` as in the Chow ring paper.
"""
function __Chow_ring_monomial_grading(M::QuiverModuliSpace, f)
return __Chow_degrees(M.d)' * collect(Singular.exponent_vectors(f))[1]
Expand All @@ -1761,7 +1764,7 @@ end
Returns the dimension of the moduli stack.
This differs from the dimension of the moduli space by 1, as we do not quotient out
the stabilizer \$ \\mathbb{G}\$.
the stabilizer `` \\mathbb{G}``.
INPUT:
- ``M``: a moduli stack of representations of a quiver.
Expand Down

0 comments on commit fe98116

Please sign in to comment.