Skip to content

PaddleSeg v2.6.0

Compare
Choose a tag to compare
@michaelowenliu michaelowenliu released this 20 Jul 13:00
· 72 commits to release/2.6 since this release
4aac3df

New Features

Semantic Segmentation

  • Release PP-HumanSeg v2, an off-the-shelf human segmentation model. It achieves 64.26 FPS on the mobile device, which is 45.5% faster than before.
  • Release PSSL, a novel pre-training method, including a large dataset that consists of 1.2M+ pseudo semantic segmentation labels (PSSL) corresponding to the whole ImageNet training set. It boosts the performances of various models on all downstream tasks.
  • Release the industrial model series: high-accuracy models, light-weight models, and super light-weight models, to help developers pick up the most suitable one.
  • Add 2 segmentation models: MobileNetV3_LRASPP,UperNet.
  • Add 1 initialization method: Xavier Uniform.
  • Upgrade data reading pipeline that allows using dict to pass the data.
  • Support PaddleSMRT which is a model selection tool that help developers to choose the best model according to the actual requirements.
  • Upgrade the homepage, and provide more easy-to-use quick-start tutorial.

Intelligent Labelling

  • Release EISeg v1.0, the stable-version semi-automatic tool for image, video and 3D slice data annotation. It achieves "Once for All" (training once, and labelling all) performance.
  • Add interactive video object segmentation for general scenes, this work is based on EISeg interactive segmentation model and MiVOS.
  • Add 3D segmentation capabilities for abdominal multi-organ and CT vertebral data, and provides 3D visualization tools.

Image Matting

  • Release PP-Matting source code and the pre-trained models.
  • Add the pymatting package that provides five traditional matting methods including ClosedFormMatting、KNNMatting, FastMatting, LearningBaseMatting, and RandomWalksMatting.
  • Add GCA model, update the ppmatting architecture, and support user-specified metrics evaluations.

3D Medical Segmentation

  • Add UNETR,we achieve Dice=71.8% in MSD-brain, which is 0.7% higher than the original implementation.
  • Add slicing window prediction to support large-scale input, which improves the inference accuracy.

新特性

语义分割

  • 发布实时人像分割模型PP-HumanSeg v2,移动端推理速度提升45.5%、达到64.26 FPS,分割精度更高、通用型更强、零成本开箱即用。
  • 发布120多万张ImageNet分割伪标签数据集,以及预训练方法PSSL,全面提升分割模型在下游任务上的性能。
  • 发布产业级语义分割模型,包括高精度、轻量级和超轻量级系列。
  • 新增2个语义分割模型,MobileNetV3_LRASPP,UperNet。
  • 新增1个初始化方法:Xavier Uniform。
  • 升级数据流程,通过字典形式进行数据的传递,提升数据流的可读性、灵活性与扩展性。
  • 接入飞桨产业模型选型工具PaddleSMRT,可以根据产业落地的诸多诉求,分析数据特点,推荐合适的模型和方案。
  • 全新升级文档主页,全流程使用教程更加详实。


智能标注

  • 发布高性能智能标注工具EISeg v1.0正式版,实现一次训练万物可标,加速提升图像、视频、3D医疗影像等领域的分割标注效率。
  • 新增用于通用场景视频交互式分割能力,以EISeg交互式分割模型及MiVOS算法为基础,全面提升视频标注体验。
  • 新增用于腹腔多器官及CT椎骨数据3D分割能力,并提供3D可视化工具,给予医疗领域3D标注新的思路。

深度抠图

  • 开源PP-Matting代码和预训练模型
  • 新增pymatting支持,引入ClosedFormMatting、KNNMatting、FastMatting、LearningBaseMatting和RandomWalksMatting传统机器学习算法。
  • 新增GCA模型,更新目录结构,支持指定指标进行评估。

3D医疗分割

  • 新增前沿模型UNETR,在MSD-brain 上Dice为71.8%,高于原论文0.7%。
  • 新增滑窗预测功能,支持大图推理提升精度。

Bug Fix

  • Fix a problem in warpAffine. #2072
  • Fix a makedirs bug. #2066
  • Fix the split_dataset_list error. #2079
  • Fix the problem of one hot when CELoss has weight. #2050
  • Fix the error of no num_class. #2200
  • Subtract the warmup iters for PolynomialDecay. #2230
  • Fix pointrend log error. #2282