Skip to content

PaddleSeg v2.0.0

Compare
Choose a tag to compare
@nepeplwu nepeplwu released this 26 Feb 09:15
· 35 commits to release/v2.0 since this release

新特性

  • 全新发布2.0版本,全面升级至动态图,支持20+分割模型,4个骨干网络,5个数据集,9种Loss:
    • 分割模型:ANN、BiSeNetV2、DANet、DeeplabV3、DeeplabV3+、FCN、FastSCNN、Gated-scnn、GCNet、HarDNet、OCRNet、PSPNet、UNet、UNet++、U2Net、Attention UNet、Decoupled SegNet、EMANet、DNLNet、ISANet
    • 骨干网络:ResNet, HRNet, MobileNetV3, Xception
    • 数据集:Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
    • Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss、OhemCrossEntropyLoss、RelaxBoundaryLoss、OhemEdgeAttentionLoss、Lovasz Hinge Loss、Lovasz Softmax Loss
  • 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 50+
  • 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
  • 支持XPU模型训练,包括DeepLabv3、HRNet、UNet。
  • 开源了基于Hierarchical Multi-Scale Attention结构的语义分割模型,在Cityscapes验证集上达到87% mIoU。
  • 动态图模式支持模型在线量化、剪枝等模型压缩功能。
  • 动态图下支持模型动转静,实现高性能部署。

New Features

  • We newly released version 2.0 which has been fully upgraded to dynamic graphics. It supports more than 20 segmentation models, 4 backbone networks, , 5 datasets and 9 losses:
    • Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U2Net, Attention UNet, Decoupled SegNet, EMANet, DNLNet, ISANet
    • Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
    • Datasets: Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
    • Losses: CrossEntropy Loss, BootstrappedCrossEntropy Loss, Dice Loss, BCE Loss, OhemCrossEntropyLoss, RelaxBoundaryLoss, OhemEdgeAttentionLoss, Lovasz Hinge Loss, Lovasz Softmax Loss
  • We provide more than 50 high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
  • The new version support multi-card GPU parallel evaluation for more efficient metrics calculation. It also support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.
  • XPU model training including DeepLabv3, HRNet, UNet, is available now.
  • We open source a semantic segmentation model based on the Hierarchical Multi-Scale Attention structure, and it reached 87% mIoU on the Cityscapes validation set.
  • The dynamic graph mode supports model compression functions such as online quantification and pruning.
  • The dynamic graph mode supports model export for high-performance deployment.