A simple package for handful ML things and more.
- add
feature
package with two types of analysis + support для остальных функций- Recursive Feature Elimination
- Sequential Feature Selection
- improve optimize:
EarlyStopping
mechanism- optimization graph
- multitasks with
n_jobs=-1
- add
logs
package
-
analysis
- method for evaluation of specified model with given dataframe. Withexport_test_set=True
it exports ready for submission predictions. -
df - module for working with dataframe:
corr
- sort all correlated features.handle_outliers
- fill or drop columns with outliers.log_transform
- transform columns with log function.group_by_mean
- make additional columns with aggregated meangroup_by_max
- make additional columns with aggregated maxgroup_by_min
- make additional columns with aggregated minapply_with_progress
- apply heavy function for each row of dataset.scale
- scale columns with Standard of MinMax scalers
-
kaggle:
submit
- make submit-file for kaggle based on sample
-
logs:
profile_memory
- logs all heavy variablesmake_pretty_pyplot
- makes pyplot look better :)
-
optuna - handful methods for working with optuna:
optimize
- optimize model with given dataframeoptimize_super_learner
- optimize super learner configuration with given set of models and set of heads (meta_model)
-
colab:
csv
- read csv file located at Google Drive with specified idpath
- get path to Google Drive file
-
feature:
rfe_analysis
- Recursive Feature Elimination analysissfs_analysis
- Sequential Feature Selection analysis
- Use
optuna
for searching the best feature amount - Add file logger to track the progress in
JupterLab
!pip install kowalsky --upgrade
from kowalsky.optuna import optimize
optimize('RFR',
path='../input/project/feed.csv',
scorer='acc',
y_label='y_label',
trials=3000)
'xgbR': XGBRegressor
'xgbC': XGBClassifier
'lgbR': LGBMRegressor
'lgbC': LGBMClassifier
'rfR': RandomForestRegressor
'rfC': RandomForestClassifier
'dtR': DecisionTreeRegressor
'dtC': DecisionTreeClassifier
'etR': ExtraTreeRegressor
'etC': ExtraTreeClassifier
'baggC': BaggingClassifier
'baggR': BaggingRegressor
'adaR': AdaBoostRegressor
'adaC': AdaBoostClassifier
'cbR': CatBoostRegressor
'cbC': CatBoostClassifier
'knC': KNeighborsClassifier
'knR': KNeighborsRegressor
'svR': SVR
'svC': SVC