Skip to content
/ pical Public

(Work In Process) pita is a general distributed computation system with Erlang language base on DAG model. This project is inspired by DouBan 's DPark and Apache Spark.

License

Notifications You must be signed in to change notification settings

Naupio/pical

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PiCal

(Work In Process) PiCal is a general distributed computation system with Elixir language base on DAG model. This project is inspired by DouBan 's DPark and Apache Spark.

LICENSE

WARNING

This project is not finish (yet).



DAG Engine TODO LIST

RDD

  • getPartition
  • compute
  • Dependency
  • Partitioner for K-V RDDs (Optional)
  • preferredLocations (Optional)

BaseRDD

ParallelCollectionRDD
MappedRDD
FlatMappedRDD
MapPartitionsRDD
MappedValuesRDD
FlatMappedValuesRDD
FilteredRDD
ShuffledRDD
TextFileRDD
OutputTextFileRDD
UnionRDD
CoGroupedRDD
CartesianRDD
CoalescedRDD
SampleRDD
CheckpointRDD

PipedRDD

DataSource

  • parallelize :> ParallelCollectionRDD
  • textFile :> TextFileRDD

Transformation

simpleTransformation

  • map(func) :> MappedRDD
    compute:> iterator(split).map(f)

  • filter(func) :> FilteredRDD
    compute:> iterator(split).filter(f)

  • flatMap(func) :> FlatMappedRDD
    compute:> iterator(split).flatMap(f)

  • mapPartitions(func) :> MapPartitionsRDD
    compute:> f(iterator(split))

  • mapPartitionsIndex(func) :> MapPartitionsRDD
    compute:> f(split.index, iterator(split))

  • sample(withReplacement, fraction, seed) :> PartitionwiseSampledRDD
    compute:>
    PoissonSampler.sample(iterator(split)) BernoulliSampler.sample(iterator(split))

complexThansformation

  • union(otherDataset) :> (RDD a, RDD b) => UnionRDD
  • groupByKey([numTasks]) :> RDD a => ShuffledRDD => MapPartitionsRDD
  • reduceByKey(func, [numTasks]) :> RDD a => MapPartitionsRDD => ShuffledRDD => MapPartitionsRDD
  • distinct([numTasks])) :> RDD a => MappedRDD => MapPartitionsRDD => ShuffledRDD => MapPartitionsRDD => MappedRDD
  • cogroup(otherDataset, [numTasks]) :> (RDD a, RDD b) => CoGroupedRDD => MappedValuesRDD
  • intersection(otherDataset) :> (RDD a, RDD b) => (MappedRDD a, MappedRDD b) => CoGroupedRDD => MappedValuesRDD => FilteredRDD => MappedRDD
  • join(otherDataset, [numTasks]) :> (RDD a, RDD b) => CoGroupedRDD => MappedValuesRDD => FlatMappedValuesRDD
  • sortByKey([ascending], [numTasks]) :> RDD a => ShuffledRDD => MapPartitionsRDD
  • cartesian(otherDataset) :> (RDD a, RDD b) => CartesianRDD
  • coalesce(numPartitions,shuffle=false) :> RDD a => CoalescedRDD
  • repartition(numPartitions) == coalesce(numPartitions,shuffle=true) :> RDD a => MapPartitionsRDD => ShuffledRDD => CoalescedRDD => MappedRDD
  • combineByKey() :> aggregate and compute()
combineByKey(createCombiner:	V	=>	C,
						mergeValue:	(C,	V)	=>	C,
						mergeCombiners:	(C,	C)	=>	C,
						partitioner:	Partitioner,
						mapSideCombine:	Boolean	=	true,
						serializer:	Serializer	=	null):	RDD[(K,	C)])
  • pipe(command, [envVars]) :> PipedRDD

Action

  • reduce(func) :> (record1, record2) => result, (result, record i) => result
    compute(results) :> (result1, result2) => result, (result, result i) => result

  • collect() :> Array[records] => result
    compute(results) :> Array[result]

  • count() :> count(records) => result
    compute(results) :> sum(result)

  • foreach(f) :> f(records) => result
    compute(results) :> Array[result]

  • take(n) :> record(i<n) => result
    compute(results) :> Array[result]

  • frist() :> record 1 => result
    compute(results) :> Array[result]

  • takeSample() :> selectd records => result
    compute(results) :> Array[result]

  • takeOrdered(n,[ordering]) :> TopN(records) => result
    compute(results) :> TopN(results)

  • saveAsFile(path) :> records => write(records)
    compute(results) :> null

  • countByKey() :> (K, V) => Map(K, count(K))
    compute(results) :> (Map, Map) => Map(K, count(K))


Partitioner

  • HashPartitioner
  • RangePartitioner

Aggregator

  • createCombiner
  • mergeValue
  • mergeCombiner

Dependency

NarrowDenpendency

  • OneToOneDependency (1:1)
  • RangeDependency
  • NarrowDenpendency (N:1)

WideDenpendency

  • ShuffleDependency (M:N)

Scheduler

DAGScheduler

  • one ShuffleDependency one stage

TaskScheduler

  • one finalRDD-partition one task

Job

  • runJob(rdd, processPartition, resultHandler)
  • runJob(rdd, cleanedFunc, partitions, allowLocal, resultHandler)
  • submitJob(rdd, func, partitions, allowLocal, resultHandler)
  • handleJobSubmmitted()

Stage

  • noParentStage computeSoon
  • haveParentStage waitParentComputeFinish
  • newStage()
  • submitStage(finalStage)
  • submitWaitingStages()

ShuffleMapStage
ResultStage

Task

  • ShuffleMapTask
  • ResultTask
  • TaskSet
  • submitTasks(taskSet)
  • LaunchTask(new SerializableBuffer(serializedTask))

Shuffle

Shuffle write

ShuffleBlockFile/FileSegment :> record => partition => persist in bucket FileConsolidation :> cores * R

Shuffle read

fetch and combine (aggregate in HashMap)


RTS

  • masterNode
  • workerNode
  • driverNode
  • executorBackend
  • executorRunner

Persist

  • Cache
  • Checkpoint

Accumulator

  • value
  • list
  • set
  • dict

Broadcast

  • BroadcastManager
  • P2PBroadcastManager

About

(Work In Process) pita is a general distributed computation system with Erlang language base on DAG model. This project is inspired by DouBan 's DPark and Apache Spark.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages