Ayniy is a supporting tool for machine learning competitions.
Documentation | Slide (Japanese)
# Import packages
from sklearn.model_selection import StratifiedKFold
import yaml
from ayniy.model.runner import Runner
# Load configs
f = open('configs/run000.yml', 'r+')
configs = yaml.load(f, Loader=yaml.SafeLoader)
# Difine CV strategy as you like
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
# Modeling
runner = Runner(configs, cv)
runner.run_train_cv()
runner.run_predict_cv()
runner.submission()
Platform | Competition Name | Rank | Repository |
---|---|---|---|
CodaLab | Basketball Behavior Challenge BBC2020 | 1 | Link |
Nishika | 財務・非財務情報を活用した株主価値予測 | 2 | Link |
SIGIR2021 | SIGIR eCOM 2021 Data Challenge | 3 | Link |
SIGNATE | ひろしまQuest2020#stayhome【アイデア部門】 | - | Link |
ProbSpace | YouTube動画視聴回数予測 | 6 | Link |
Solafune | 夜間光データから土地価格を予測 | 6 | Link |
atmaCup | #8 [初心者向] atmaCup | - | Link |
Kaggle | WiDS Datathon 2021 | 64 | Link |
Kaggle | Titanic: Machine Learning from Disaster | - | Link |
mkdir project_dir
cd project_dir
sh start.sh
kaggle_utils is used for feature engineering.
docker compose up -d --build
docker exec -it ayniy-test bash
cd experiments
mlflow ui -h 0.0.0.0 --port 5001
!git clone https://github.com/upura/ayniy
import sys
sys.path.append("/kaggle/working/ayniy")
!pip install -r /kaggle/working/ayniy/requirements.txt
!mkdir '../output/'
!mkdir '../output/logs'
from sklearn.model_selection import StratifiedKFold
from ayniy.model.runner import Runner
pysen run lint
pysen run format
In container,
cd docs
make html
Out of container,
sh deploy.sh