-
Notifications
You must be signed in to change notification settings - Fork 3
Paper: Computer Physics Communications, 220, 341-350 (2017); Preprint: https://arxiv.org/abs/1703.03676
LevBarash/PAising
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
The programs PAisingSSC and PAisingMSC are introduced in the paper: L.Yu. Barash, M. Weigel, M. Borovsky, W. Janke, L.N. Shchur, GPU accelerated population annealing algorithm This work is licensed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0/ To compile the programs, use Nvidia CUDA compiler (nvcc). For example: nvcc -o PAisingSSC PAisingSSC.cu nvcc -o PAisingMSC PAisingMSC.cu Optionally, the flags specifying GPU architecture of a particular device can be added. For example: nvcc -arch=sm_35 -o PAisingSSC PAisingSSC.cu nvcc -arch=sm_35 -o PAisingMSC PAisingMSC.cu To make a quick check on your hardware, run the programs with the parameters -s 100 The output files for the PAisingSSC and PAisingMSC programs will be placed in the subdirectories "dataSSC_L64_R20000_EqSw100_dB0.005000" and "dataMSC_L64_R20000_EqSw100_dB0.005000" correspondingly. Compare the output files generated on your hardware with the ones which are saved in the "sample_output" subdirectory.
About
Paper: Computer Physics Communications, 220, 341-350 (2017); Preprint: https://arxiv.org/abs/1703.03676
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published