developed by Léo Simpson, Evan Bolyen, Christian L. Müller
https://docs.qiime2.org/2020.2/install/native/#install-qiime-2-within-a-conda-environment
source activate qiime2-2020.2
- zarr
- plotly
- c-lasso
For example, in the qiime2 tutorial of the parkinson mouse :
https://docs.qiime2.org/2020.2/tutorials/pd-mice/
at the section "Taxonomic classification", a file called taxonomy.qza can be downloaded, which is a FeatureData[Taxonomy].
One can use this taxonomy and build random data "with respect to this taxonomy".
python setup.py install
qiime dev refresh-cache
qiime classo generate-data \
--i-taxa taxonomy.qza \
--o-x randomx.qza \
--o-c randomc.qza
qiime classo transform-features \
--i-features randomx.qza \
--o-x xclr.qza
qiime classo add-taxa \
--i-features xclr.qza \
--i-taxa taxonomy.qza \
--i-c randomc.qza \
--o-x xtaxa.qza \
--o-ca ctaxa.qza
qiime classo regress \
--i-features xtaxa.qza\
--i-c ctaxa.qza\
--m-y-file randomy.tsv\
--m-y-column col\
--o-result problem.qza
qiime classo summarize \
--i-taxa taxonomy.qza \
--i-problem problem.qza \
--o-visualization problem.qzv
qiime tools view problem.qzv
Bien, J., Yan, X., Simpson, L. and Müller, C. (2020). Tree-Aggregated Predictive Modeling of Microbiome Data :
" we consider soluble CD14 (sCD14) measurements in HIV patients as the variable to predict and learn an interpretable regression model from gut microbial amplicon data. sCD14 is a marker of microbial translocation and has been shown to be an independent predictor of mortality in HIV infection (Sandler et al., 2011). Following Rivera-Pinto et al. (2018), we analyze a HIV cohort of n = 151 patients where sCD14 levels (in pg/ml units) and fecal 16S rRNA amplicon data were measured. "
We provide here a q2-classo workflow to study possible prediction of sCD14 using all available p = 539 bacterial and archaeal OTUs.
One can do the following commands in the folder example/data_qiime :
The workflow starts from a file table.qza
already provided , a taxonomic table taxonomy.qza
and a metadata sample-metadata-complete
qiime classo transform-features \
--i-features table.qza \
--o-x xclr.qza
qiime classo add-taxa \
--i-features xclr.qza \
--i-taxa taxonomy.qza \
--o-x xtaxa.qza --o-ca ctaxa.qza
qiime sample-classifier split-table \
--i-table xtaxa.qza \
--m-metadata-file sample-metadata-complete.tsv \
--m-metadata-column sCD14 \
--p-test-size 0.2 \
--p-random-state 123 \
--p-stratify False \
--o-training-table xtraining \
--o-test-table xtest
qiime classo regress \
--i-features xtraining.qza \
--i-c ctaxa.qza \
--m-y-file sample-metadata-complete.tsv \
--m-y-column sCD14 \
--p-concomitant False \
--p-stabsel-threshold 0.5 \
--p-cv-seed 123456 \
--p-cv-one-se False \
--o-result problemtaxa
qiime classo predict \
--i-features xtest.qza \
--i-problem problemtaxa.qza \
--o-predictions predictions.qza
qiime classo summarize \
--i-problem problemtaxa.qza \
--i-taxa taxonomy.qza \
--i-predictions predictions.qza \
--o-visualization problemtaxa.qzv
qiime tools view problemtaxa.qzv
Alternatively, one can drag&drop the file problemtaxa.qzv on : https://view.qiime2.org Thanks to this alternative, one can also track the workflow that the qiime2 artifact did.