Skip to content

Commit

Permalink
Merge pull request #79 from JuliaRobotics/21Q2/enh/partials
Browse files Browse the repository at this point in the history
add partialDimMask to product
  • Loading branch information
dehann authored Jun 25, 2021
2 parents 5d2887e + d971734 commit 1a02e13
Show file tree
Hide file tree
Showing 6 changed files with 156 additions and 27 deletions.
50 changes: 50 additions & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
name: CI
on:
pull_request:
push:
branches:
- master

jobs:
test:
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
runs-on: ${{ matrix.os }}
env:
JULIA_PKG_SERVER: ""
strategy:
fail-fast: false
matrix:
version:
- '1.6'
- 'nightly'
os:
- ubuntu-latest
arch:
- x64
steps:
- uses: actions/checkout@v2
- uses: julia-actions/setup-julia@v1
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- uses: actions/cache@v1
env:
cache-name: cache-artifacts
with:
path: ~/.julia/artifacts
key: ${{ runner.os }}-test-${{ env.cache-name }}-${{ hashFiles('**/Project.toml') }}
restore-keys: |
${{ runner.os }}-test-${{ env.cache-name }}-
${{ runner.os }}-test-
${{ runner.os }}-
- uses: julia-actions/julia-buildpkg@latest
- run: |
git config --global user.name Tester
git config --global user.email [email protected]
- uses: julia-actions/julia-runtest@latest
continue-on-error: ${{ matrix.version == 'nightly' }}
- uses: julia-actions/julia-processcoverage@v1
- uses: codecov/codecov-action@v1
with:
file: lcov.info

2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ name = "KernelDensityEstimate"
uuid = "2472808a-b354-52ea-a80e-1658a3c6056d"
keywords = ["NBP", "nonparametric", "kernel density", "functional products", "multiscale", "Gibbs sampling", "KDE"]
desc = "A modified version of the multiscale Gibbs product and KDE"
version = "0.5.5"
version = "0.5.6"

[deps]
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Expand Down
12 changes: 6 additions & 6 deletions src/KDE01.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@


function kde!(points::A,
addop=(+,),
diffop=(-,) ) where {A <: AbstractArray{Float64,2}}
addop::Tuple=(+,),
diffop::Tuple=(-,) ) where {A <: AbstractArray{Float64,2}}
#
dims = size(points,1)

Expand Down Expand Up @@ -31,11 +31,11 @@ function kde!(points::Array{Float64,1}, addop=(+,), diffop=(-,) )
return kde!(reshape(points, 1, length(points)), addop, diffop )
end

function kde!(points::A,
function kde!(points::AbstractArray{<:Real,2},
ks::Array{Float64,1},
weights::Array{Float64,1},
addop=(+,),
diffop=(-,) ) where {A <: AbstractArray{Float64,2}}
diffop=(-,) )
#
Nd, Np = size(points)
if (length(ks) == 1)
Expand All @@ -61,7 +61,7 @@ end
Construct a BallTreeDensity object using `points` for centers and bandwidth `ks`.
"""
function kde!(points::A, ks::Array{Float64,1}, addop=(+,), diffop=(-,)) where {A <: AbstractArray{Float64,2}}
function kde!(points::A, ks::Array{Float64,1}, addop::Tuple=(+,), diffop::Tuple=(-,)) where {A <: AbstractArray{Float64,2}}

Nd, Np = size(points)
weights = ones(Np)
Expand All @@ -75,7 +75,7 @@ function kde!(points::A, ks::Array{Float64,1}, addop=(+,), diffop=(-,)) where {A
kde!(points, ks, weights, addop, diffop)
end

function kde!(points::Array{Float64,1}, ks::Array{Float64,1}, addop=(+,), diffop=(-,))
function kde!(points::Array{Float64,1}, ks::Array{Float64,1}, addop::Tuple=(+,), diffop::Tuple=(-,))
Np = length(points)
pts = zeros(1,Np)
pts[1,:] = points
Expand Down
55 changes: 35 additions & 20 deletions src/MSGibbs01.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ mutable struct GbGlb
# labelsChoosen[sample][densityId][level]
labelsChoosen::Dict{Int,Dict{Int,Dict{Int,Int}}}
recordChoosen::Bool
partialDimMask::Vector{BitArray{1}}
end

function makeEmptyGbGlb(;recordChoosen::Bool=false)
Expand All @@ -48,11 +49,14 @@ function makeEmptyGbGlb(;recordChoosen::Bool=false)
ones(Int,1,0),
ones(Int,1,0),
zeros(Int,0),
0, 0,
0,
0,
Float64[0.0;], Float64[0.0;],
zeros(0), zeros(0),
zeros(0),
zeros(0),
Dict{Int,Dict{Int,Dict{Int,Int}}}(),
recordChoosen )
recordChoosen,
Vector{BitVector}() )
end


Expand All @@ -70,6 +74,8 @@ function printGlbs(g::GbGlb, tag::String="")
@show g.levelListNew
@show round.(g.newPoints, digits=4)
@show g.newIndices
@show g.partialDimMask
nothing
end


Expand Down Expand Up @@ -185,10 +191,10 @@ function gaussianProductMeanCov!( glb::GbGlb,
else
# on manifold development
@inbounds @fastmath @simd for j in 1:glb.Ndens
if (j!=skip)
if (j!=skip) && glb.partialDimMask[j][dim]
# who populated glb.particles?
glb.calclambdas[j] = 1.0/glb.variance[dim,j]
glb.calcmu[j] = glb.particles[dim,j] #[dim+glb.Ndim*(j-1)]
glb.calcmu[j] = glb.particles[dim,j]
else
# adding zeros does not influence the result because `lambda_i = 0`
glb.calclambdas[j] = 0.0
Expand Down Expand Up @@ -495,7 +501,9 @@ function gibbs1(Ndens::Int, trees::Array{BallTreeDensity,1},
getMu=(getEuclidMu,),
getLambda=(getEuclidLambda,),
glbs = makeEmptyGbGlb(),
addEntropy::Bool=true )
addEntropy::Bool=true,
ndims::Int=maximum(Ndim.(trees)),
partialDimMask::AbstractVector{<:BitVector} = [ones(Int,ndims) .== 1 for i in 1:Ndens] )
#

# number densities in the product
Expand All @@ -510,7 +518,8 @@ function gibbs1(Ndens::Int, trees::Array{BallTreeDensity,1},
glbs.randU = randU
glbs.randN = randN
# the dimension of the incoming densities
glbs.Ndim = trees[1].bt.dims
glbs.Ndim = maximum(Ndim.(trees))
glbs.partialDimMask = partialDimMask

maxNp = 0 # largest # of particles we deal with
for tree in trees
Expand Down Expand Up @@ -612,27 +621,29 @@ function prodAppxMSGibbsS(npd0::BallTreeDensity,
getMu::T3=(getEuclidMu,),
getLambda::T4=(getEuclidLambda,),
glbs = makeEmptyGbGlb(),
addEntropy::Bool=true ) where {T1<:Tuple,T2<:Tuple,T3<:Tuple,T4<:Tuple}
addEntropy::Bool=true,
ndims::Int=maximum(Ndim.(trees)),
partialDimMask::AbstractVector{BitVector} = [ones(Int,ndims) .== 1 for i in 1:length(trees)]
) where {T1<:Tuple,T2<:Tuple,T3<:Tuple,T4<:Tuple}
#
#


# See Ihler,Sudderth,Freeman,&Willsky, "Efficient multiscale sampling from products
# of Gaussian mixtures", in Proc. Neural Information Processing Systems 2003
Ndens = length(trees) # of densities
Ndim = trees[1].bt.dims # of dimensions
# ndims = trees[1].bt.dims # of dimensions
Np = Npts(npd0) # of points to sample

# prepare stack manifold add and diff operations functions (manifolds must match dimension)
addopT = length(addop)!=Ndim ? ([ (addop[1]) for i in 1:Ndim]...,) : addop
diffopT = length(diffop)!=Ndim ? ([ (diffop[1]) for i in 1:Ndim]...,) : diffop
getMuT = length(getMu)!=Ndim ? ([ getMu[1] for i in 1:Ndim]...,) : getMu
getLambdaT = length(getLambda)!=Ndim ? ([ getLambda[1] for i in 1:Ndim]...,) : getLambda
addopT = length(addop)!=ndims ? ([ (addop[1]) for i in 1:ndims]...,) : addop
diffopT = length(diffop)!=ndims ? ([ (diffop[1]) for i in 1:ndims]...,) : diffop
getMuT = length(getMu)!=ndims ? ([ getMu[1] for i in 1:ndims]...,) : getMu
getLambdaT = length(getLambda)!=ndims ? ([ getLambda[1] for i in 1:ndims]...,) : getLambda

# skipping analytic functions for now TODO ??
UseAn = false
#??pointsM = zeros(Ndim, Np)
points = zeros(Ndim*Np)
#??pointsM = zeros(ndims, Np)
points = zeros(ndims*Np)
#??plhs[1] = mxCreateNumericMatrix(Ndens, Np, mxUINT32_CLASS, mxREAL);
indices=ones(Int,Ndens, Np)
maxNp = Np
Expand All @@ -648,15 +659,19 @@ function prodAppxMSGibbsS(npd0::BallTreeDensity,
# Generate enough random numbers to get us through the rest of this
if true
randU = rand(Int(Np*Ndens*(Niter+2)*Nlevels))
randN = randn(Int(Ndim*Np*(Nlevels+1)))
randN = randn(Int(ndims*Np*(Nlevels+1)))
else
# FIXME using DelimitedFiles
randU = vec(readdlm("randU.csv"))
randN = vec(readdlm("randN.csv"))
end

gibbs1(Ndens, trees, Np, Niter, points, indices, randU, randN, addop=addopT, diffop=diffopT, getMu=getMuT, getLambda=getLambdaT, glbs=glbs, addEntropy=addEntropy );
return reshape(points, Ndim, Np), indices
gibbs1( Ndens, trees, Np, Niter, points, indices,
randU, randN, addop=addopT, diffop=diffopT, ndims=ndims,
getMu=getMuT, getLambda=getLambdaT, glbs=glbs,
addEntropy=addEntropy, partialDimMask=partialDimMask );
#
return reshape(points, ndims, Np), indices
end


Expand All @@ -673,7 +688,7 @@ function *( trees::Vector{BallTreeDensity};
end

numpts = round(Int, Statistics.mean(Npts.(trees)))
d = Ndim(trees[1])
d = maximum(Ndim.(trees))
for p in trees
d != Ndim(p) ? error("kdes must have same dimension") : nothing
end
Expand Down
3 changes: 3 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -253,3 +253,6 @@ pp = convert(BallTreeDensity, ps)
@test norm(getBW(pp)-getBW(p)) < 1e-4

end


include("testPartialProd.jl")
61 changes: 61 additions & 0 deletions test/testPartialProd.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@


using KernelDensityEstimate


##

@testset "test partial product" begin

##

pts1 = rand(2,100) .+ 10.0
mask1 = 1 .== ones(2)
mask1[2] = false

pts2 = rand(2,100)
mask2 = 1 .== ones(2)

pts3 = rand(2,100) .- 10.0
mask3 = 1 .== ones(2)
mask3[1] = false


##

P1 = kde!(pts1)
P2 = kde!(pts2)
P3 = kde!(pts3)

bw1 = getBW(P1)[:,1]
bw2 = getBW(P2)[:,1]
bw3 = getBW(P3)[:,1]

pts1[2,:] .= 9999999.0
pts3[1,:] .= 9999999.0

P1 = kde!(pts1, bw1)
P3 = kde!(pts3, bw3)


mask = [mask1, mask2, mask3]

##

dummy = kde!(rand(2,100));

pGM, = prodAppxMSGibbsS(dummy, [P1;P2;P3], nothing, nothing, partialDimMask=mask )

# P = kde!(pGM)

@test 80 < sum(0 .< pGM[1,:] .< 10 )

@test 80 < sum(-10 .< pGM[2,:] .< 0)


##

end


#

0 comments on commit 1a02e13

Please sign in to comment.