Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

In-place eigvals for complex Hermitian BandedMatrix #359

Merged
merged 6 commits into from
May 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "BandedMatrices"
uuid = "aae01518-5342-5314-be14-df237901396f"
version = "0.17.23"
version = "0.17.24"

[deps]
ArrayLayouts = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
Expand Down
51 changes: 51 additions & 0 deletions src/lapack.jl
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,57 @@ for (fname, elty) in ((:dsbtrd_,:Float64),
end
end

for (fname, elty) in ((:zhbtrd_,:ComplexF64),
(:chbtrd_,:ComplexF32))
@eval begin
local Relty = real($elty)
function hbtrd!(vect::Char, uplo::Char,
m::Int, k::Int, A::AbstractMatrix{$elty},
d::AbstractVector{Relty}, e::AbstractVector{Relty}, Q::AbstractMatrix{$elty},
work::AbstractVector{$elty})
require_one_based_indexing(A)
chkstride1(A)
chkuplo(uplo)
chkvect(vect)
info = Ref{BlasInt}()
n = size(A,2)
n ≠ m && throw(ArgumentError("Matrix must be square"))
size(A,1) < k+1 && throw(ArgumentError("Not enough bands"))
info = Ref{BlasInt}()
ccall((@blasfunc($fname), liblapack), Nothing,
(
Ref{UInt8},
Ref{UInt8},
Ref{BlasInt},
Ref{BlasInt},
Ptr{$elty},
Ref{BlasInt},
Ptr{Relty},
Ptr{Relty},
Ptr{$elty},
Ref{BlasInt},
Ptr{$elty},
Ptr{BlasInt},
),
vect,
uplo,
n,
k,
A,
max(1,stride(A,2)),
d,
e,
Q,
max(1,stride(Q,2)),
work,
info
)
LAPACK.chklapackerror(info[])
d, e, Q
end
end
end

## Bidiagonalization
for (fname, elty) in ((:dgbbrd_,:Float64),
(:sgbbrd_,:Float32))
Expand Down
53 changes: 50 additions & 3 deletions src/symbanded/bandedeigen.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,34 @@
## eigvals routine
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The eigvals methods are moved to bandedeigen.jl from symbanded.jl so that they're in the same file as eigen and are easy to discover.


# the symmetric case uses lapack throughout
eigvals(A::Symmetric{T,<:BandedMatrix{T}}) where T<:Union{Float32, Float64} = eigvals!(copy(A))
eigvals(A::Symmetric{T,<:BandedMatrix{T}}, irange::UnitRange) where T<:Union{Float32, Float64} = eigvals!(copy(A), irange)
eigvals(A::Symmetric{T,<:BandedMatrix{T}}, vl::Real, vu::Real) where T<:Union{Float32, Float64} = eigvals!(copy(A), vl, vu)

eigvals(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}) = eigvals!(tridiagonalize(A))
eigvals(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}, irange::UnitRange) = eigvals!(tridiagonalize(A), irange)
eigvals(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}, vl::Real, vu::Real) = eigvals!(tridiagonalize(A), vl, vu)

eigvals!(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}, args...) = eigvals!(tridiagonalize!(A), args...)

function eigvals!(A::Symmetric{T,<:BandedMatrix{T}}, B::Symmetric{T,<:BandedMatrix{T}}) where T<:Real
n = size(A, 1)
@assert n == size(B, 1)
@assert A.uplo == B.uplo
# compute split-Cholesky factorization of B.
kb = bandwidth(B)
B_data = symbandeddata(B)
pbstf!(B.uplo, n, kb, B_data)
# convert to a regular symmetric eigenvalue problem.
ka = bandwidth(A)
A_data = symbandeddata(A)
X = Array{T}(undef,0,0)
work = Vector{T}(undef,2n)
sbgst!('N', A.uplo, n, ka, kb, A_data, B_data, X, work)
# compute eigenvalues of symmetric eigenvalue problem.
eigvals!(A)
end

# V = G Q
struct BandedEigenvectors{T} <: AbstractMatrix{T}
G::Vector{Givens{T}}
Expand Down Expand Up @@ -44,13 +75,16 @@ convert(::Type{GeneralizedEigen{T, T, Matrix{T}, Vector{T}}}, F::GeneralizedEige
compress(F::Eigen{T, T, BandedEigenvectors{T}, Vector{T}}) where T = convert(Eigen{T, T, Matrix{T}, Vector{T}}, F)
compress(F::GeneralizedEigen{T, T, BandedGeneralizedEigenvectors{T}, Vector{T}}) where T = convert(GeneralizedEigen{T, T, Matrix{T}, Vector{T}}, F)

eigen(A::Symmetric{T,<:BandedMatrix{T}}) where T <: Real = eigen!(copy(A))
eigen(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}) = eigen!(copy(A))
eigen(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}, irange::UnitRange) = eigen!(copy(A), irange)
eigen(A::RealHermSymComplexHerm{<:Real,<:BandedMatrix}, vl::Real, vu::Real) = eigen!(copy(A), vl, vu)

function eigen(A::Symmetric{T,<:BandedMatrix{T}}, B::Symmetric{T,<:BandedMatrix{T}}) where T <: Real
AA = _copy_bandedsym(A, B)
eigen!(AA, copy(B))
end

function eigen!(A::Symmetric{T,<:BandedMatrix{T}}) where T <: Real
function eigen!(A::HermOrSym{T,<:BandedMatrix{T}}, args...) where T <: Real
N = size(A, 1)
KD = bandwidth(A)
D = Vector{T}(undef, N)
Expand All @@ -59,10 +93,23 @@ function eigen!(A::Symmetric{T,<:BandedMatrix{T}}) where T <: Real
WORK = Vector{T}(undef, N)
AB = symbandeddata(A)
sbtrd!('V', A.uplo, N, KD, AB, D, E, G, WORK)
Λ, Q = eigen(SymTridiagonal(D, E))
Λ, Q = eigen!(SymTridiagonal(D, E), args...)
Eigen(Λ, BandedEigenvectors(G, Q, similar(Q, size(Q,1))))
end

function eigen!(A::Hermitian{T,<:BandedMatrix{T}}, args...) where T <: Complex
N = size(A, 1)
KD = bandwidth(A)
D = Vector{real(T)}(undef, N)
E = Vector{real(T)}(undef, N-1)
Q = Matrix{T}(undef, N, N)
WORK = Vector{T}(undef, N)
AB = hermbandeddata(A)
hbtrd!('V', A.uplo, N, KD, AB, D, E, Q, WORK)
Λ, W = eigen!(SymTridiagonal(D, E), args...)
Eigen(Λ, Q * W)
end

function eigen!(A::Symmetric{T,<:BandedMatrix{T}}, B::Symmetric{T,<:BandedMatrix{T}}) where T <: Real
isdiag(A) || isdiag(B) || symmetricuplo(A) == symmetricuplo(B) || throw(ArgumentError("uplo of matrices do not match"))
S = splitcholesky!(B)
Expand Down
40 changes: 0 additions & 40 deletions src/symbanded/symbanded.jl
Original file line number Diff line number Diff line change
Expand Up @@ -114,46 +114,6 @@ function materialize!(M::BlasMatMulVecAdd{<:HermitianLayout{<:BandedColumnMajor}
_banded_hbmv!(symmetricuplo(A), α, A, x, β, y)
end


## eigvals routine


function _tridiagonalize!(A::AbstractMatrix{T}, ::SymmetricLayout{<:BandedColumnMajor}) where T
n=size(A, 1)
d = Vector{T}(undef,n)
e = Vector{T}(undef,n-1)
Q = Matrix{T}(undef,0,0)
work = Vector{T}(undef,n)
sbtrd!('N', symmetricuplo(A), size(A,1), bandwidth(A), symbandeddata(A), d, e, Q, work)
SymTridiagonal(d,e)
end

tridiagonalize!(A::AbstractMatrix) = _tridiagonalize!(A, MemoryLayout(typeof(A)))

eigvals(A::Symmetric{T,<:BandedMatrix{T}}) where T<:Base.IEEEFloat = eigvals!(copy(A))
eigvals(A::Symmetric{T,<:BandedMatrix{T}}) where T<:Real = eigvals!(tridiagonalize(A))
eigvals(A::Hermitian{T,<:BandedMatrix{T}}) where T<:Real = eigvals!(tridiagonalize(A))
eigvals(A::Hermitian{T,<:BandedMatrix{T}}) where T<:Complex = eigvals!(tridiagonalize(A))

eigvals!(A::Symmetric{T,<:BandedMatrix{T}}) where T <: Real = eigvals!(tridiagonalize!(A))
function eigvals!(A::Symmetric{T,<:BandedMatrix{T}}, B::Symmetric{T,<:BandedMatrix{T}}) where T<:Real
n = size(A, 1)
@assert n == size(B, 1)
@assert A.uplo == B.uplo
# compute split-Cholesky factorization of B.
kb = bandwidth(B)
B_data = symbandeddata(B)
pbstf!(B.uplo, n, kb, B_data)
# convert to a regular symmetric eigenvalue problem.
ka = bandwidth(A)
A_data = symbandeddata(A)
X = Array{T}(undef,0,0)
work = Vector{T}(undef,2n)
sbgst!('N', A.uplo, n, ka, kb, A_data, B_data, X, work)
# compute eigenvalues of symmetric eigenvalue problem.
eigvals!(A)
end

function copyto!(A::Symmetric{<:Number,<:BandedMatrix}, B::Symmetric{<:Number,<:BandedMatrix})
size(A) == size(B) || throw(ArgumentError("sizes of A and B must match"))
bandwidth(A) >= bandwidth(B) || throw(ArgumentError("bandwidth of A must exceed that of B"))
Expand Down
21 changes: 21 additions & 0 deletions src/symbanded/tridiagonalize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -84,3 +84,24 @@ function copybands(A::AbstractMatrix{T}, d::Integer) where T
B
end

function _tridiagonalize!(A::AbstractMatrix{T}, ::SymmetricLayout{<:BandedColumnMajor}) where T<:Union{Float32,Float64}
n=size(A, 1)
d = Vector{T}(undef,n)
e = Vector{T}(undef,n-1)
Q = Matrix{T}(undef,0,0)
work = Vector{T}(undef,n)
sbtrd!('N', symmetricuplo(A), size(A,1), bandwidth(A), symbandeddata(A), d, e, Q, work)
SymTridiagonal(d,e)
end

function _tridiagonalize!(A::AbstractMatrix{T}, ::HermitianLayout{<:BandedColumnMajor}) where T<:Union{ComplexF32,ComplexF64}
n=size(A, 1)
d = Vector{real(T)}(undef,n)
e = Vector{real(T)}(undef,n-1)
Q = Matrix{T}(undef,0,0)
work = Vector{T}(undef,n)
hbtrd!('N', symmetricuplo(A), size(A,1), bandwidth(A), hermbandeddata(A), d, e, Q, work)
SymTridiagonal(d,e)
end

tridiagonalize!(A::AbstractMatrix) = _tridiagonalize!(A, MemoryLayout(typeof(A)))
74 changes: 63 additions & 11 deletions test/test_symbanded.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,13 +47,20 @@ import BandedMatrices: MemoryLayout, SymmetricLayout, HermitianLayout, BandedCol
# (generalized) eigen & eigvals
Random.seed!(0)

A = brand(Float64, 100, 100, 2, 4)
std = eigvals(Symmetric(Matrix(A)))
@test eigvals(Symmetric(A)) ≈ std
@test eigvals(Hermitian(A)) ≈ std
@test eigvals(Hermitian(big.(A))) ≈ std
@testset for T in (Float32, Float64)
A = brand(T, 10, 10, 2, 4)
std = eigvals(Symmetric(Matrix(A)))
@test eigvals(Symmetric(A)) ≈ std
@test eigvals(Symmetric(A), 2:4) ≈ std[2:4]
@test eigvals(Symmetric(A), 1, 2) ≈ std[1 .<= std .<= 2]
@test eigvals!(copy(Symmetric(A))) ≈ std
@test eigvals!(copy(Symmetric(A)), 2:4) ≈ std[2:4]
@test eigvals!(copy(Symmetric(A)), 1, 2) ≈ std[1 .<= std .<= 2]

@test eigvals(Symmetric(A, :L)) ≈ eigvals(Symmetric(Matrix(A), :L))
end

A = brand(ComplexF64, 100, 100, 4, 0)
A = brand(ComplexF64, 20, 20, 4, 0)
@test Symmetric(A)[2:10,1:9] isa BandedMatrix
@test Hermitian(A)[2:10,1:9] isa BandedMatrix
@test isempty(Hermitian(A)[1:0,1:9])
Expand All @@ -62,11 +69,7 @@ import BandedMatrices: MemoryLayout, SymmetricLayout, HermitianLayout, BandedCol
@test [Symmetric(A)[k,j] for k=2:10, j=1:9] == Symmetric(A)[2:10,1:9]
@test [Hermitian(A)[k,j] for k=2:10, j=1:9] == Hermitian(A)[2:10,1:9]

std = eigvals(Hermitian(Matrix(A), :L))
@test eigvals(Hermitian(A, :L)) ≈ std
@test eigvals(Hermitian(big.(A), :L)) ≈ std

A = Symmetric(brand(Float64, 100, 100, 2, 4))
A = Symmetric(brand(Float64, 10, 10, 2, 4))
F = eigen(A)
Λ, Q = F
@test Q'Matrix(A)*Q ≈ Diagonal(Λ)
Expand All @@ -79,6 +82,16 @@ import BandedMatrices: MemoryLayout, SymmetricLayout, HermitianLayout, BandedCol
@test Q[:,3] ≈ MQ[:,3]
@test Q[1,2] ≈ MQ[1,2]

F = eigen(A, 2:4)
Λ, Q = F
QM = Matrix(Q)
@test QM' * (Matrix(A)*QM) ≈ Diagonal(Λ)

F = eigen(A, 1, 2)
Λ, Q = F
QM = Matrix(Q)
@test QM' * (Matrix(A)*QM) ≈ Diagonal(Λ)

function An(::Type{T}, N::Int) where {T}
A = Symmetric(BandedMatrix(Zeros{T}(N,N), (0, 2)))
for n = 0:N-1
Expand Down Expand Up @@ -177,6 +190,45 @@ end
@test all(A*x .=== muladd!(one(T),A,x,zero(T),copy(x)) .===
materialize!(MulAdd(one(T),A,x,zero(T),copy(x))) .===
BLAS.hbmv!('L', 1, one(T), view(parent(A).data,3:4,:), x, zero(T), similar(x)))

@testset "eigen" begin
@testset for T in (Float32, Float64, ComplexF64, ComplexF32), uplo in (:L, :U)
A = brand(T, 20, 20, 4, 2)
std = eigvals(Hermitian(Matrix(A), uplo))
@test eigvals(Hermitian(A, uplo)) ≈ std
@test eigvals(Hermitian(A, uplo), 2:4) ≈ std[2:4]
@test eigvals(Hermitian(A, uplo), 1, 2) ≈ std[1 .<= std .<= 2]
@test eigvals(Hermitian(big.(A), uplo)) ≈ std
@test eigvals!(copy(Hermitian(A, uplo))) ≈ std
@test eigvals!(copy(Hermitian(A, uplo)), 2:4) ≈ std[2:4]
@test eigvals!(copy(Hermitian(A, uplo)), 1, 2) ≈ std[1 .<= std .<= 2]
end

@testset for T in (Float32, Float64, ComplexF32, ComplexF64), uplo in (:L, :U)
A = Hermitian(brand(T, 20, 20, 2, 4), uplo)
MA = Hermitian(Matrix(A), uplo)
λ1, v1 = eigen!(copy(A))
λ2, v2 = eigen!(copy(MA))
@test λ1 ≈ λ2
@test v1' * MA * v1 ≈ Diagonal(λ1)

λ3, v3 = eigen!(copy(A), 2:4)
@test λ3 ≈ λ1[2:4]
@test v3' * (MA * v3) ≈ Diagonal(λ3)

λ4, v4 = eigen(A, 2:4)
@test λ4 ≈ λ3
@test v4' * (MA * v4) ≈ Diagonal(λ4)

λ3, v3 = eigen!(copy(A), 1, 2)
@test λ3 ≈ λ1[1 .<= λ1 .<= 2]
@test v3' * (MA * v3) ≈ Diagonal(λ3)

λ4, v4 = eigen!(copy(A), 1, 2)
@test λ4 ≈ λ1[1 .<= λ1 .<= 2]
@test v4' * (MA * v4) ≈ Diagonal(λ4)
end
end
end

@testset "LDLᵀ" begin
Expand Down