-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c78ecdb
commit c7e1471
Showing
1 changed file
with
115 additions
and
0 deletions.
There are no files selected for viewing
115 changes: 115 additions & 0 deletions
115
app/resources/collection/blocks/Blocks/Tensorflow/Detector.vc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
{ | ||
"version": "1.0", | ||
"package": { | ||
"name": "Detector", | ||
"version": "1.0.0", | ||
"description": "Detects Objects in an Image", | ||
"author": "Muhammad Taha Suhail", | ||
"image": "" | ||
}, | ||
"design": { | ||
"board": "Python3-Noetic", | ||
"graph": { | ||
"blocks": [ | ||
|
||
{ | ||
"id": "100", | ||
"type": "basic.input", | ||
"data": { | ||
"name": "", | ||
"pins": [ | ||
{ | ||
"index": "0", | ||
"name": "", | ||
"value": "0" | ||
} | ||
], | ||
"virtual": true | ||
}, | ||
"position": { | ||
"x": 64, | ||
"y": 144 | ||
} | ||
}, | ||
|
||
|
||
{ | ||
"id": "200", | ||
"type": "basic.output", | ||
"data": { | ||
"name": "", | ||
"pins": [ | ||
{ | ||
"index": "0", | ||
"name": "", | ||
"value": "0" | ||
} | ||
], | ||
"virtual": true | ||
}, | ||
"position": { | ||
"x": 752, | ||
"y": 144 | ||
} | ||
}, | ||
|
||
|
||
{ | ||
"id": "300", | ||
"type": "basic.code", | ||
"data": { | ||
"code": "import numpy as np\nimport cv2\nimport time\nfrom wires.wire_img import Wire_Read\nfrom wires.wire_img import Wire_Write\n\nimport tensorflow.compat.v1 as tf\ntf.disable_v2_behavior()\n\nclass DetectorAPI:\n def __init__(self, path_to_ckpt):\n self.path_to_ckpt = path_to_ckpt\n\n self.detection_graph = tf.Graph()\n with self.detection_graph.as_default():\n od_graph_def = tf.GraphDef()\n with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:\n serialized_graph = fid.read()\n od_graph_def.ParseFromString(serialized_graph)\n tf.import_graph_def(od_graph_def, name='')\n\n self.default_graph = self.detection_graph.as_default()\n self.sess = tf.Session(graph=self.detection_graph)\n\n # Definite input and output Tensors for detection_graph\n self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')\n # Each box represents a part of the image where a particular object was detected.\n self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')\n # Each score represent how level of confidence for each of the objects.\n # Score is shown on the result image, together with the class label.\n self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')\n self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')\n self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')\n\n def processFrame(self, image):\n # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]\n image_np_expanded = np.expand_dims(image, axis=0)\n # Actual detection.\n start_time = time.time()\n (boxes, scores, classes, num) = self.sess.run(\n [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],\n feed_dict={self.image_tensor: image_np_expanded})\n end_time = time.time()\n\n print(\"Elapsed Time:\", end_time-start_time)\n\n im_height, im_width,_ = image.shape\n boxes_list = [None for i in range(boxes.shape[1])]\n for i in range(boxes.shape[1]):\n boxes_list[i] = (int(boxes[0,i,0] * im_height),\n int(boxes[0,i,1]*im_width),\n int(boxes[0,i,2] * im_height),\n int(boxes[0,i,3]*im_width))\n\n return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])\n\n def close(self):\n self.sess.close()\n self.default_graph.close()\n\n\ndef Detector(input_wires, output_wires, parameters):\n\n model_path = 'backend/models/frozen_inference_graph.pb'\n odapi = DetectorAPI(path_to_ckpt=model_path)\n threshold = 0.7\n cap = cv2.VideoCapture(0)\n\n shm_r = Wire_Read(input_wires[0])\n shm_w = Wire_Write(output_wires[0])\n\n while True:\n \n img = shm_r.get()\n boxes, scores, classes, num = odapi.processFrame(img)\n\n for i in range(len(boxes)):\n # Class 1 represents human\n if classes[i] == 1 and scores[i] > threshold:\n box = boxes[i]\n cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),2)\n \n shm_w.add(img)\n \n shm_r.release()\n shm_w.release()", | ||
"params": [], | ||
"ports": { | ||
"in": [ | ||
{ | ||
"name": "100" | ||
} | ||
], | ||
"out": [ | ||
{ | ||
"name": "200" | ||
} | ||
] | ||
} | ||
}, | ||
"position": { | ||
"x": 248, | ||
"y": 88 | ||
}, | ||
"size": { | ||
"width": 384, | ||
"height": 256 | ||
} | ||
} | ||
|
||
|
||
], | ||
|
||
"wires": [ | ||
{ | ||
"source": { | ||
"block": "", | ||
"port": "" | ||
}, | ||
"target": { | ||
"block": "", | ||
"port": "" | ||
} | ||
}, | ||
|
||
{ | ||
"source": { | ||
"block": "", | ||
"port": "" | ||
}, | ||
"target": { | ||
"block": "", | ||
"port": "" | ||
} | ||
} | ||
] | ||
} | ||
}, | ||
"dependencies": {} | ||
} |