Deep Learning for time series data: A survey and experimental study
- Python;
- Matplotlib
- Numba;
- NumPy;
- Pandas;
- scikit-learn;
- sktime;
- scipy;
- TensorFlow-GPU;
- tqdm.
Arguments:
-d --dataset_names : dataset names (optional, default=all)
-c --classifier_names : classifier (optional, default=all)
-o --output_path : path to results (optional, default=root_dir)
-i --iterations : number of runs (optional, default=3)
-g --generate_results_csv : make results.csv (optional, default=False)
Examples:
> python main.py
> python main.py -d Adiac Coffee -c rocket_tf mlp -i 1
> python main.py -g True
The framework expects data from the UCR archive in the .ts format.
The folder structure for the datasets is as follows: /UCRArchive_2018/dataset_name/
For example, the train/test of Adiac should be saved under /UCRArchive_2018/Adiac/
Calling main.py without any arguments trains every model on every dataset.
Results are saved in /results.
To generate a results.csv for the tested models, main.py -g True is called.