Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Absolute continuity #30

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 25 additions & 15 deletions theories/absolute_continuity.v
Original file line number Diff line number Diff line change
Expand Up @@ -237,25 +237,35 @@ Lemma Banach_Zarecki_increasing (f : R -> R) :
lusinN `[a, b] f ->
abs_cont a b f.
Proof.
move=> cf incf bvf lf.
apply: contrapT.
move=> /existsNP[e0].
move=> /forallNP fe0.
have {}fe0 : forall d : {posnum R},
move=> cf incf bvf lf; apply: contrapT => /existsNP[e0] /forallNP fe0.
have {fe0} : forall d : {posnum R},
exists n, exists B : 'I_n -> R * R,
[/\ (forall i, (B i).1 <= (B i).2 /\ `[(B i).1, (B i).2] `<=` `[a, b]),
trivIset setT (fun i => `[(B i).1, (B i).2]%classic),
\sum_(k < n) ((B k).2 - (B k).1) < d%:num &
\sum_(k < n) (f (B k).2 - f (B k).1) >= e0%:num ].
move=> d.
have {fe0} := fe0 d.
move=> /existsNP[n].
move=> /existsNP[B].
move=> /not_implyP[] [H1 H2 H3 H4].
exists n, B; split => //.
by rewrite leNgt; apply/negP.
pose delta_ (i : nat) := 0 < (2 ^ i)^-1 :> R.

\sum_(k < n) (f (B k).2 - f (B k).1) >= e0%:num].
move=> d; have {fe0} := fe0 d.
move=> /existsNP[n] /existsNP[B] /not_implyP[] [H1 H2 H3 H4].
by exists n, B; split => //; rewrite leNgt; apply/negP.
move=> /choice[n_0 ab_0].
pose delta_0 (i : nat) : R := (2 ^+ i)^-1.
have delta_0_ge0 (i : nat) : 0 < (2 ^+ i)^-1 :> R by rewrite invr_gt0 exprn_gt0.
pose delta_ (i : nat) : {posnum R} := PosNum (delta_0_ge0 i).
pose n_ i := n_0 (delta_ i).
pose ab_ i : 'I_(n_ i) -> R * R := projT1 (cid (ab_0 (delta_ i))).
have d_prop i : \sum_(k < n_ i) (((ab_ i) k).2 - ((ab_ i) k).1) < delta_0 i.
by rewrite /ab_; case: cid => ? [].
have e0_prop i : \sum_(k < n_ i) (f (((ab_ i) k).2) - f ((ab_ i) k).1) >= e0%:num.
by rewrite /ab_; case: cid => ? [].
pose E_ i := \big[setU/set0]_(k < n_ i) `]((ab_ i) k).2, ((ab_ i) k).1[%classic.
pose G_ i := \bigcup_(j in [set j | (j >= i)%N]) E_ j.
pose A := \bigcap_i (G_ i).
have mA0 : lebesgue_measure A = 0.
rewrite /A.
admit.
have mfA0 := lebesgue_measure (f @` A) = 0.
(* use lf *)
admit.
Admitted.

Theorem Banach_Zarecki (f : R -> R) :
Expand Down
Loading