Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist authored and IshiguroYoshihiro committed Jul 23, 2024
1 parent dfd1c70 commit 20121aa
Showing 1 changed file with 140 additions and 53 deletions.
193 changes: 140 additions & 53 deletions theories/absolute_continuity.v
Original file line number Diff line number Diff line change
Expand Up @@ -1297,51 +1297,136 @@ Qed.

End abs_contP.

Lemma lteD2rE {R : realDomainType} (x a b : \bar R) : x \is a fin_num -> (a + x < b + x)%E = (a < b)%E.
Proof. by rewrite -!(addeC x); exact: lteD2lE. Qed.

Lemma subset_bigcup2 {T I : Type} (P Q : set I) (F : I -> set T) : P `<=` Q ->
\bigcup_(i in P) F i `<=` \bigcup_(i in Q) F i.
Proof. by move=> PQ x [i /PQ Qi Fix]; exists i. Qed.

Section vitali_theorem2.
Context {R : realType} (A : set R) (B : nat -> set R).
Hypothesis B0 : forall i, (0 < (radius (B i))%:num)%R.
Notation mu := (@lebesgue_measure R).
Local Open Scope ereal_scope.

Lemma vitali_theorem2 (F : set nat) :
(mu^* A)%mu < +oo%E -> vitali_cover A B F ->
(mu A)%mu < +oo%E -> vitali_cover A B F ->
forall e, e%:E > 0 -> exists G' : {fset nat}, [/\ [set` G'] `<=` F,
trivIset [set` G'] (closure \o B) &
(mu^* (A `\` \big[setU/set0]_(k <- G') closure (B k)))%mu < e%:E].
((wlength idfun)^* (A `\` \big[setU/set0]_(k <- G') closure (B k)))%mu < e%:E].
Proof.
move=> muAfin ABF e e0.
have [O [oO AO OAoo]] :
exists O : set R, [/\ open O, A `<=` O & (mu O < (mu^* A)%mu + 1 < +oo)%E].
exists O : set R, [/\ open O, A `<=` O & (mu O < (mu A)%mu + 1 < +oo)%E].
rewrite lte_fin in e0.
admit.
have lt012 : (0 < 1 / 2 :> R)%R.
by rewrite divr_gt0//.
have [O [oA AO OAe]] := @li.outer_open_approx R A muAfin _ lt012.
exists O; split => //.
apply/andP; split.
rewrite (le_lt_trans OAe)//.
rewrite lteD2lE ?ge0_fin_numE ?outer_measure_ge0// lte_fin.
by rewrite ltr_pdivrMr// mul1r ltr1n.
by rewrite lte_add_pinfty// ltry.
pose F' := [set k | k \in F /\ B k `<=` O].
have ABF' : vitali_cover A B F'.
case: ABF => Bball ABF; split => // r Ar d d0.
have [k [Vk Bkr Bkd]] := ABF _ Ar _ d0.
exists k; split => //; split.
exact/mem_set.
admit.
(* leb_fun_thm.pdf *)
case: ABF => Bball ABF.
split => //.
move=> x Ax r r0.
have [d xdO] : exists d : {posnum R}, ball x d%:num `<=` O.
have := open_subball oO (AO _ Ax).
move=> [/= d d0 dxO].
have d20 : (0 < d / 2)%R by rewrite divr_gt0.
exists (PosNum d20) => z xdz.
apply: dxO; last exact: xdz.
by rewrite /= sub0r normrN gtr0_norm// gtr_pMr// invf_lt1// ltr1n.
by [].
pose delta : R := minr r (d%:num / 2)%R.
have delta_gt0 : (0 < delta)%R by rewrite lt_min r0//= divr_gt0.
have [k [Vk Bkr Bkd]] := ABF _ Ax _ delta_gt0.
exists k => //; split => //.
split; first exact/mem_set.
apply: subset_trans xdO.
move=> /= z Bkz.
rewrite /ball/=.
rewrite -(addrKA (- cpoint (B k))).
rewrite (le_lt_trans (ler_normB _ _))//= -(addrC z).
rewrite (splitr d%:num) ltrD//.
rewrite distrC (lt_le_trans (is_ballP _ _))//.
by rewrite (le_trans (ltW Bkd))// ge_min lexx orbT.
rewrite distrC (lt_le_trans (is_ballP _ _))//.
by rewrite (le_trans (ltW Bkd))// ge_min lexx orbT.
by rewrite (lt_le_trans Bkd)// ge_min// lexx.
have [G [cG GV' tB mAG0]] := vitali_theorem B0 ABF'.
pose G' c := [set k | k \in F' /\ (radius (B k))%:num >= c]%R.
pose G' c := [set k | k \in G /\ (radius (B k))%:num >= c]%R.
have muBfin : mu (\bigcup_(k in G) closure(*rm closure*) (B k)) \is a fin_num.
rewrite ge0_fin_numE//.
rewrite (@le_lt_trans _ _ (mu O))//.
rewrite (@le_trans _ _ (mu (\bigcup_(k in G) B k)))//.
admit.
rewrite le_outer_measure//.
by apply: bigcup_sub => i /GV'[].
admit.
pose G'_cplt c := [set k | k \in G /\ (radius (B k))%:num < c]%R.
have [c Hc] : exists c : {posnum R},
(mu (\bigcup_(k in G' c%:num) B k) > mu (\bigcup_(k in G) B k) - e%:E)%E.
(mu (\bigcup_(k in G' c%:num) closure (B k)) >
mu (\bigcup_(k in G) closure (B k)) - e%:E)%E.
have : mu (\bigcup_(k in G' c) closure (B k)) @[c --> 0^'+] -->
mu (\bigcup_(k in G) closure (B k)).
admit.
rewrite -(fineK muBfin).
move=> /fine_cvgP[_].
move/cvgrPdist_lt => /=.
move/(_ e).
rewrite -(@lte_fin R) => /(_ e0)[c /= c0] H.
exists (PosNum c0).
admit.
have G'c : finite_set (G' c%:num).
admit.
admit. (* because balls in G' are pairwise disjoint,
have at least measure mu (B(0,c))>0, and
are contained in O of finite measure *)
have {}Hc : (mu (\bigcup_(k in G) closure (B k) `\` \bigcup_(k in G' c%:num) closure (B k)) < e%:E)%E.
rewrite measureD//=.
- rewrite setIidr.
rewrite lteBlDr//; last first.
admit.
by rewrite -lteBlDl.
by apply: subset_bigcup2 => x [/set_mem].
- apply: bigcup_measurable => k Gk.
case: ABF => isB _.
rewrite (ballE (isB k)) closure_ball.
exact: measurable_closed_ball.
- apply: bigcup_measurable => k Gk.
case: ABF => isB _.
rewrite (ballE (isB k)) closure_ball.
exact: measurable_closed_ball.
- by rewrite -ge0_fin_numE.
exists (fset_set (G' c%:num)); split.
- move=> /= k.
by rewrite in_fset_set// inE /G'/= inE => -[[/set_mem]].
by rewrite in_fset_set// inE /G'/= => -[/set_mem] /GV'[/set_mem].
- apply: sub_trivIset tB => k/=.
rewrite in_fset_set// inE /G'/= inE => -[[/set_mem Fk BkO cBk]].
admit.
- pose UG : set R := \big[setU/set0]_(k <- fset_set G) closure (B k).
apply: (@le_lt_trans _ _ (mu (A `\`UG) +
mu (UG `\` \big[setU/set0]_(k <- fset_set (G' c%:num)) closure (B k)))).
rewrite [in leLHS](@setDU _ _ UG); last 2 first.
rewrite /UG.
admit.
rewrite /UG.
admit.
by rewrite in_fset_set// inE /G'/==> -[/set_mem].
- pose UG : set R := \bigcup_(k in G) closure (B k).
apply: (@le_lt_trans _ _ ((wlength idfun)^*%mu (A `\`UG) +
mu (UG `\` \bigcup_(k in G' c%:num) closure (B k)))).
apply: (@le_trans _ _ (
(wlength idfun)^*%mu (A `&` (UG `\` \bigcup_(k in G' c%:num) closure (B k))) +
(wlength idfun)^*%mu (A `\` UG))).
apply: (le_trans _ (outer_measureU2 _ _ _)) => //=.
apply: le_outer_measure.
rewrite !(setDE A).
rewrite -setIUr.
apply: setIS.
rewrite setDE.
move=> x Hx.
have [UGx|UGx] := pselect (UG x).
left; split => //.
by rewrite bigsetU_fset_set in Hx.
by right.
by rewrite addeC leeD2l// le_outer_measure.
by rewrite -[(wlength idfun)^*%mu]/mu mAG0 add0e.
Abort.

End vitali_theorem2.
Expand Down Expand Up @@ -2433,7 +2518,7 @@ rewrite in_itv/=; apply/andP; split=> //.
exact: itv_partition_nth_le.
Unshelve. all:end_near. Qed.

Lemma nondecresing_at_left_at_right : {in `]a, b[, forall r,
Lemma nondecreasing_at_left_at_right : {in `]a, b[, forall r,
lim (F x @[x --> r^'-]) <= lim (F x @[x --> r^'+])}.
Proof.
move=> r; rewrite in_itv/= => /andP[ar rb].
Expand Down Expand Up @@ -2504,7 +2589,7 @@ have eq6 (x : elt_type) : exists m, m.+1%:R ^-1 < Fr (sval x) - Fl (sval x).
have : discontinuity F (sval x) by case: x => /= r; rewrite inE /A/= => -[].
move=> [Fc Fd cd].
have FlFr : Fl (sval x) <= Fr (sval x).
apply: nondecresing_at_left_at_right.
apply: nondecreasing_at_left_at_right.
by case: x {Fc Fd cd} => x/= /[1!inE] -[].
have {}FlFr : Fl (sval x) < Fr (sval x).
by rewrite lt_neqAle FlFr andbT.
Expand Down Expand Up @@ -3216,28 +3301,30 @@ rewrite ger0_norm// invf_lt1//.
exact: ltr1n.
Qed.

Lemma lebesgue_measure_Gdelta_approx Z : (lebesgue_measure Z < +oo)%E ->
Let mu := (@lebesgue_measure R).

Lemma lebesgue_measure_Gdelta_approx Z : (mu Z < +oo)%E ->
exists U : nat -> set R, [/\ (forall k, Z `<=` U k), (forall k, open (U k)) &
lebesgue_measure Z = lebesgue_measure (\bigcap_k U k)].
mu Z = mu (\bigcap_k U k)].
Proof.
move=> Zoo.
pose delta0 k := 2^-1 ^+ k :> R.
have delta_ge0 k : 0 < delta0 k.
apply: exprn_gt0.
by rewrite invr_gt0.
have mUfin : ereal_inf [set lebesgue_measure U | U in [set U | open U /\ Z `<=` U]]
\is a fin_num.
have mUfin : ereal_inf [set mu U | U in [set U | open U /\ Z `<=` U]] \is a fin_num.
by rewrite -lebesgue_regularity_outer_inf ge0_fin_numE.
have := fun k => (@exists2P _ _ _).1 (@lb_ereal_inf_adherent _ [set lebesgue_measure U | U in [set U | open U /\ Z `<=` U]] (delta0 k) (delta_ge0 k) mUfin).
move/(@choice _ _ (fun k x => [set lebesgue_measure U | U in [set U | open U /\ Z `<=` U]] x /\
(x <
ereal_inf [set lebesgue_measure U | U in [set U | open U /\ Z `<=` U]] +
have := fun k => (@exists2P _ _ _).1
(@lb_ereal_inf_adherent _ [set mu U | U in [set U | open U /\ Z `<=` U]]
(delta0 k) (delta_ge0 k) mUfin).
move/(@choice _ _ (fun k x => [set mu U | U in [set U | open U /\ Z `<=` U]] x /\
(x < ereal_inf [set mu U | U in [set U | open U /\ Z `<=` U]] +
(delta0 k)%:E)%E)).
move=> [e_] /all_and2[/= + einf].
under [X in X -> _]eq_forall do rewrite exists2E.
move=> /choice[U_].
move=> /all_and2[/all_and2[oU ZU] mUe].
pose V_ := (fun n => \bigcap_(i < n.+1) U_ i).
pose V_ := fun n => \bigcap_(i < n.+1) U_ i.
exists V_; split.
move=> n.
exact: sub_bigcap => i _.
Expand All @@ -3249,7 +3336,7 @@ rewrite [X in _ = _ X](_:_= \bigcap_i U_ i); last first.
by apply: (Hx n.+1) => /=.
move=> x Hx n _ k /= kn.
exact: Hx.
have V0oo : (lebesgue_measure (V_ 0%N) < +oo)%E.
have V0oo : (mu (V_ 0%N) < +oo)%E.
rewrite /V_ bigcap1.
rewrite (mUe 0%N).
apply: (lt_trans (einf 0%N)).
Expand Down Expand Up @@ -3286,25 +3373,25 @@ have VE : \bigcap_i V_ i = \bigcap_i U_ i.
exact: (HU k).
rewrite -VE.
apply: esym.
have := (@nonincreasing_cvg_mu _ _ _ lebesgue_measure V_ V0oo mV mIV niV).
move/cvg_lim => <- //.
have /cvg_lim VIV:= @nonincreasing_cvg_mu _ _ _ mu V_ V0oo mV mIV niV.
rewrite -[LHS]VIV//.
apply: cvg_lim => //.
apply: (@squeeze_cvge _ _ _ _ (cst (lebesgue_measure Z)) _ (fun n => (lebesgue_measure Z + (delta0 n)%:E)%E)).
apply: nearW => n/=; apply/andP; split.
apply: le_outer_measure.
move=> x Zx k/= _.
exact: ZU.
apply: (@le_trans _ _ (lebesgue_measure (U_ n))).
apply: le_outer_measure.
by apply: bigcap_inf => /=.
by rewrite mUe lebesgue_regularity_outer_inf ltW.
exact: cvg_cst.
rewrite -{2}(adde0 (_ Z)).
apply: cvgeD.
exact: fin_num_adde_defl.
exact: cvg_cst.
apply: cvg_EFin; first exact: nearW.
apply: cvg_half.
apply: (@squeeze_cvge _ _ _ _ (cst (mu Z)) _ (fun n => (mu Z + (delta0 n)%:E)%E)).
- apply: nearW => n/=; apply/andP; split.
apply: le_outer_measure.
move=> x Zx k/= _.
exact: ZU.
apply: (@le_trans _ _ (mu (U_ n))).
apply: le_outer_measure.
by apply: bigcap_inf => /=.
by rewrite mUe /mu lebesgue_regularity_outer_inf ltW.
- exact: cvg_cst.
- rewrite -{2}(adde0 (_ Z)).
apply: cvgeD.
+ exact: fin_num_adde_defl.
+ exact: cvg_cst.
+ apply: cvg_EFin; first exact: nearW.
exact: cvg_half.
Qed.

(* Lemma open_subset_itvoocc S : open S -> S `<=` `[a, b] -> S `<=` `]a, b[. *)
Expand Down

0 comments on commit 20121aa

Please sign in to comment.