Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Keras file format updates #128

Merged
merged 11 commits into from
Aug 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions .github/workflows/core.yml
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ concurrency:

env:
# default Python version to use for checks that do not require multiple versions
DEFAULT_PYTHON_VERSION: '3.8'
DEFAULT_PYTHON_VERSION: '3.10'
IDAES_CONDA_ENV_NAME_DEV: idaes-examples-dev
PYTEST_ADDOPTS: "--color=yes"

Expand Down Expand Up @@ -62,9 +62,10 @@ jobs:
fail-fast: false
matrix:
python-version:
- '3.8'
- '3.9'
- '3.10'
- '3.11'
- '3.12'
os:
- linux
- win64
Expand Down
2 changes: 1 addition & 1 deletion .readthedocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ version: 2
build:
os: ubuntu-20.04
tools:
python: "3.8"
python: "3.10"
jobs:
pre_build:
# Set conf vars and update the Sphinx configuration (conf.py)
Expand Down
3 changes: 0 additions & 3 deletions idaes_examples/browse.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,6 @@
# stdlib
from importlib import resources

if not hasattr(resources, "files"):
# importlib.resources.files() added in Python 3.9
import importlib_resources as resources
import json
import logging
from logging.handlers import RotatingFileHandler
Expand Down
6 changes: 3 additions & 3 deletions idaes_examples/mod/surrogates/AR_training_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ def train_load_surrogates(retrain=False) -> Set[SurrType]:

# Train surrogates using Keras

if os.path.exists('keras_surrogate/') and retrain is False:
if os.path.exists('keras_surrogate/keras_model.keras') and retrain is False:
# surrogates folder already exists, skip training
# we will load the object into the flowsheet later
pass
Expand Down Expand Up @@ -263,7 +263,7 @@ def train_load_surrogates(retrain=False) -> Set[SurrType]:
# Train surrogate (calls optimizer on neural network and solves
# for weights)
model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
mcp_save = tf.keras.callbacks.ModelCheckpoint('.mdl_wts.hdf5',
mcp_save = tf.keras.callbacks.ModelCheckpoint('.mdl_wts.keras',
save_best_only=True,
monitor='val_loss',
mode='min')
Expand All @@ -281,7 +281,7 @@ def train_load_surrogates(retrain=False) -> Set[SurrType]:
input_bounds=input_bounds,
input_scaler=input_scaler,
output_scaler=output_scaler)
keras_surrogate.save_to_folder('keras_surrogate')
keras_surrogate.save_to_folder(keras_folder_name="keras_surrogate", keras_model_name="keras_model")

trained_surr.add(SurrType.KERAS)

Expand Down
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -531,7 +531,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down
4,033 changes: 587 additions & 3,446 deletions idaes_examples/notebooks/docs/surrogates/best_practices_optimization_doc.ipynb

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -531,7 +531,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -635,4 +635,4 @@
},
"nbformat": 4,
"nbformat_minor": 3
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -531,7 +531,7 @@
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n",
" elif surrogate_type == SurrType.KERAS:\n",
" keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
" keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
" m.fs.surrogate = SurrogateBlock()\n",
" m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -635,4 +635,4 @@
},
"nbformat": 4,
"nbformat_minor": 3
}
}
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -250,7 +250,7 @@
"# Train surrogate (calls optimizer on neural network and solves for weights)\n",
"model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n",
"mcp_save = tf.keras.callbacks.ModelCheckpoint(\n",
" \".mdl_wts.hdf5\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
" \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
")\n",
"history = model.fit(\n",
" x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n",
Expand All @@ -268,7 +268,7 @@
" input_scaler=input_scaler,\n",
" output_scaler=output_scaler,\n",
")\n",
"keras_surrogate.save_to_folder(\"keras_surrogate\")\n",
"keras_surrogate.save_to_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"\n",
"# revert back to normal output capture\n",
"sys.stdout = oldstdout\n",
Expand Down Expand Up @@ -411,7 +411,7 @@
"\n",
"# create the Pyomo/IDAES block that corresponds to the surrogate\n",
"# Keras\n",
"keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
"keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"m.fs.surrogate = SurrogateBlock()\n",
"m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down Expand Up @@ -523,4 +523,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -250,7 +250,7 @@
"# Train surrogate (calls optimizer on neural network and solves for weights)\n",
"model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n",
"mcp_save = tf.keras.callbacks.ModelCheckpoint(\n",
" \".mdl_wts.hdf5\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
" \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
")\n",
"history = model.fit(\n",
" x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n",
Expand All @@ -268,7 +268,7 @@
" input_scaler=input_scaler,\n",
" output_scaler=output_scaler,\n",
")\n",
"keras_surrogate.save_to_folder(\"keras_surrogate\")\n",
"keras_surrogate.save_to_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"\n",
"# revert back to normal output capture\n",
"sys.stdout = oldstdout\n",
Expand Down Expand Up @@ -411,7 +411,7 @@
"\n",
"# create the Pyomo/IDAES block that corresponds to the surrogate\n",
"# Keras\n",
"keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
"keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"m.fs.surrogate = SurrogateBlock()\n",
"m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -250,7 +250,7 @@
"# Train surrogate (calls optimizer on neural network and solves for weights)\n",
"model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n",
"mcp_save = tf.keras.callbacks.ModelCheckpoint(\n",
" \".mdl_wts.hdf5\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
" \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n",
")\n",
"history = model.fit(\n",
" x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n",
Expand All @@ -268,7 +268,7 @@
" input_scaler=input_scaler,\n",
" output_scaler=output_scaler,\n",
")\n",
"keras_surrogate.save_to_folder(\"keras_surrogate\")\n",
"keras_surrogate.save_to_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"\n",
"# revert back to normal output capture\n",
"sys.stdout = oldstdout\n",
Expand Down Expand Up @@ -411,7 +411,7 @@
"\n",
"# create the Pyomo/IDAES block that corresponds to the surrogate\n",
"# Keras\n",
"keras_surrogate = KerasSurrogate.load_from_folder(\"keras_surrogate\")\n",
"keras_surrogate = KerasSurrogate.load_from_folder(keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\")\n",
"m.fs.surrogate = SurrogateBlock()\n",
"m.fs.surrogate.build_model(\n",
" keras_surrogate,\n",
Expand Down
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -17,7 +17,7 @@
"# University, West Virginia University Research Corporation, et al.\n",
"# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n",
"# for full copyright and license information.\n",
"###############################################################################"
"###############################################################################\n"
]
},
{
Expand All @@ -37,7 +37,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [
{
Expand All @@ -47,7 +47,7 @@
"<IPython.core.display.Image object>"
]
},
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -75,9 +75,19 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n",
"expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n",
"<frozen importlib._bootstrap>:241)\n"
]
}
],
"source": [
"from pyomo.environ import (ConcreteModel,\n",
" Block,\n",
Expand Down Expand Up @@ -117,33 +127,33 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-08-19 22:20:40 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n",
"2023-08-19 22:20:40 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:41 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:41 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n",
"2023-08-19 22:20:41 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:41 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n",
"2023-08-19 22:20:42 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:42 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:42 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n",
"2023-08-19 22:20:42 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:43 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:44 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:44 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:44 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n",
"2023-08-19 22:20:44 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:44 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n",
"2023-08-19 22:20:45 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:45 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n",
"2023-08-19 22:20:45 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n",
"2023-08-19 22:20:45 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n",
"2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n",
"2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n",
"2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n",
"2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n",
"2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n",
"2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n",
"2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n",
"2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n",
"--------------------------------------------------------------------\n",
"The degrees of freedom for the flowsheet is 0\n",
"--------------------------------------------------------------------\n",
Expand Down Expand Up @@ -204,8 +214,8 @@
"Number of equality constraint Jacobian evaluations = 2\n",
"Number of inequality constraint Jacobian evaluations = 0\n",
"Number of Lagrangian Hessian evaluations = 1\n",
"Total CPU secs in IPOPT (w/o function evaluations) = 0.119\n",
"Total CPU secs in NLP function evaluations = 0.003\n",
"Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n",
"Total CPU secs in NLP function evaluations = 0.008\n",
"\n",
"EXIT: Optimal Solution Found.\n",
"\n",
Expand Down Expand Up @@ -689,9 +699,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 3
}
}
Loading
Loading