[1]https://www.bilibili.com/video/BV1gz41187Hk [2]https://www.bilibili.com/video/BV1MT4y1V74w
We also provide PyTorch code for deployment on mobile device.
.
├── bin
│ ├── app_test.py
│ ├── demo.py
│ ├── my_test.py
│ └── my_train.py
├── data
├── gcnet
│ ├── classifier.py
│ ├── __init__.py
│ ├── json_utils.py
│ ├── logger.py
│ ├── __pycache__
│ ├── resnet.py
│ ├── test.py
│ ├── train.py
│ ├── transforms.py
│ └── utils.py
├── models
└── preprocess
├── 01.html
├── 01-原始数据集分布可视化分析.py
├── 02-原始数据集train-val划分.py
├── 03.html
├── 03-train和val数据分布可视化.py
├── 04.html
├── 04-四大类垃圾分布可视化.py
├── 05.html
├── 05-四大类垃圾train-val分布可视化.py
├── 06-数据增强transform.py
├── 07-原始数据可视化.py
├── 08-预处理数据加载.py
├── 09-测试resnext101模型.py
├── 10-Web服务环境搭建.py
├── 11-分类网络环境搭建.py
└── images
python ./demo.py
You should download data and models from BaiduYun: https://pan.baidu.com/s/1g9RoIGxf2OD1zo4bgbMQWg password: cdz5
python ./my_train.py
python ./my_test.py
python ./app_test.py
Model | Iter | precision | recall | f1-score |
---|---|---|---|---|
resnext101_32x16d | 10 | 0.9827 | 0.9826 | 0.9826 |
resnext101_32x8d | 30 | 0.9589 | 0.9588 | 0.9583 |
resnext101_32x8d | 10 | 0.9473 | 0.9472 | 0.9472 |
resnet18 | 10 | 0.8968 | 0.8959 | 0.8940 |
- resnext101_32x16d
LR | epoch | Train Loss | Valid Loss | Train Acc. | Valid Acc. |
---|---|---|---|---|---|
0.001000 | 1.000000 | 0.281912 | 0.241702 | 90.296428 | 91.276075 |
0.001000 | 2.000000 | 0.177333 | 0.147571 | 93.530952 | 94.628832 |
0.001000 | 3.000000 | 0.163498 | 0.135344 | 94.181235 | 95.118656 |
0.001000 | 4.000000 | 0.148997 | 0.081726 | 94.586606 | 96.968161 |
0.001000 | 5.000000 | 0.133063 | 0.090255 | 95.110210 | 96.807702 |
0.001000 | 6.000000 | 0.125995 | 0.069795 | 95.346677 | 97.415759 |
0.001000 | 7.000000 | 0.122259 | 0.102625 | 95.642260 | 96.351659 |
0.001000 | 8.000000 | 0.127478 | 0.068116 | 95.422684 | 97.660671 |
0.001000 | 9.000000 | 0.132976 | 0.053337 | 95.312896 | 98.268727 |
0.001000 | 10.000000 | 0.118554 | 0.068123 | 95.616924 | 97.669116 |