Skip to content
This repository has been archived by the owner on Jul 23, 2024. It is now read-only.

Commit

Permalink
fix indentation and docmd
Browse files Browse the repository at this point in the history
  • Loading branch information
drndr committed Aug 2, 2023
1 parent aedd50a commit 7958b66
Show file tree
Hide file tree
Showing 20 changed files with 174 additions and 304 deletions.
Original file line number Diff line number Diff line change
@@ -1,17 +1,15 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_adv)',

// @TODO: Add a description of the task
description: 'Natural Language Codesearch Classification (codesearchnet_adv) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures robustness in covariate shift',

// @TODO: Add a list of keywords that describe the task
keywords: [
'codesearch',
'natural language query',
'binary classification',
'python',
'robustness',
'covariate shift',
'binary classification',
'python',
'robustness',
'covariate shift',
],

authors: [
Expand All @@ -24,7 +22,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -35,26 +33,20 @@
evaluation_metrics: [
{
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
],

preparation_strategies: {
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},

prompt_based_testing: {
prompt_builder: {
// Currently, we follow BIG-bench options for prompt construction:
// https://github.com/google/BIG-bench/blob/main/docs/doc.md#optional-fields
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and a Python programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_go)',

// @TODO: Add a description of the task

description: 'Natural Language Codesearch Classification (codesearchnet_go) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures cross-lingual generalization',

// @TODO: Add a list of keywords that describe the task
keywords: [
'codesearch',
'natural language query',
'binary classification',
'go',
'cross-lingual'
'binary classification',
'go',
'cross-lingual'
],

authors: [
Expand All @@ -23,7 +21,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_go/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -34,24 +32,19 @@
evaluation_metrics: [
{
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
],

preparation_strategies: {

finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
prompt_based_testing: {
prompt_builder: {
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and a Go programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_java)',

// @TODO: Add a description of the task

description: 'Natural Language Codesearch Classification (codesearchnet_java) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures cross-lingual generalization',

// @TODO: Add a list of keywords that describe the task

keywords: [
'codesearch',
'natural language query',
'binary classification',
'java',
'cross-lingual'
'binary classification',
'java',
'cross-lingual'
],

authors: [
Expand All @@ -23,7 +21,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_java/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -34,24 +32,19 @@
evaluation_metrics: [
{
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
],

preparation_strategies: {

finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
prompt_based_testing: {
prompt_builder: {
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and a Java programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_javascript)',

// @TODO: Add a description of the task
description: 'Natural Language Codesearch Classification (codesearchnet_javascript) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures cross-lingual generalization',

// @TODO: Add a list of keywords that describe the task
keywords: [
'codesearch',
'natural language query',
'binary classification',
'javascript',
'cross-lingual'
'binary classification',
'javascript',
'cross-lingual'
],

authors: [
Expand All @@ -23,7 +21,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_javascript/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -36,22 +34,17 @@
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
},
],

preparation_strategies: {

finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
prompt_based_testing: {
prompt_builder: {
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and an Javascript programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_php)',

// @TODO: Add a description of the task

description: 'Natural Language Codesearch Classification (codesearchnet_php) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures cross-lingual generalization',

// @TODO: Add a list of keywords that describe the task
keywords: [
'codesearch',
'natural language query',
'binary classification',
'php',
'cross-lingual'
'binary classification',
'php',
'cross-lingual'
],

authors: [
Expand All @@ -23,7 +21,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_php/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -34,24 +32,19 @@
evaluation_metrics: [
{
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
],

preparation_strategies: {

finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
prompt_based_testing: {
prompt_builder: {
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and a PHP programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
{
name: 'Natural Language Codesearch Classification (codesearchnet_ruby)',

// @TODO: Add a description of the task
description: 'Natural Language Codesearch Classification (codesearchnet_ruby) aims to measure the generalization capabilites of language models in code understanding. This subtasks measures cross-lingual generalization',

// @TODO: Add a list of keywords that describe the task
keywords: [
'codesearch',
'natural language query',
'binary classification',
'ruby',
'cross-lingual'
'binary classification',
'ruby',
'cross-lingual'
],

authors: [
Expand All @@ -23,7 +21,7 @@
data_source: {
type: 'manual',
test: 'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_ruby/test_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
train:'https://raw.githubusercontent.com/drndr/genbench_ds/master/sample_data/clf/codesearchnet_adv/train_sample_cbt.jsonl',
},

has_validation_set: false,
Expand All @@ -34,24 +32,19 @@
evaluation_metrics: [
{
hf_id: 'accuracy',
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
git_commit_sha: '34d6add55811828baef83e0d7c6826e2193f7b6a',
best_score: 1.0,
},
],

preparation_strategies: {

finetuning: {
finetuning: {
objective: 'maximum_likelihood',
},
// A recipe for preparing the model to perform the task by configuring its prompt.
// This recipe is suitable for generative LMs such as GPT-3, OPT, T5, etc.
// We provide a few options for configuring the prompt. But, the task creator can
// also provide a custom prompt preparation in the task's Python class.
prompt_based_testing: {
prompt_builder: {
instruction_zero_shot: 'Given a code comment and an R programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
instruction_zero_shot: 'Given a code comment and a Ruby programming language code snippet, determine if the comment accurately represents the function of the code. Respond with True if the code matches the comment and False if it does not. The input format is defined as: comment [SEP] code',
input_prefix: '',
output_prefix: '',
choices_prefix: '',
append_choices_to_input: false,
Expand Down
Loading

0 comments on commit 7958b66

Please sign in to comment.