Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix gif generation #234

Merged
merged 2 commits into from
Aug 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 15 additions & 18 deletions docs/_scripts/generate_gif.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,33 +22,30 @@ def _space_at(values, index):
return values[index]


def generate_gif(dataset_id, path, num_frames=256, fps=16):
def generate_gif(dataset_id, path, num_frames=512, fps=32):
dataset = minari.load_dataset(dataset_id)
env = dataset.recover_environment(render_mode="rgb_array")
images = []
if "seed" not in dataset.storage.get_episode_metadata([0])[0]:
raise ValueError("Cannot reproduce episodes with unknown seed.")

episode_id = 0
while len(images) < num_frames:
episode = dataset[episode_id]
episode_metadata = dataset.storage.get_episode_metadata([episode_id])[0]
env.reset(
seed=episode_metadata.get("seed"), options=episode_metadata.get("options")
)

metadatas = dataset.storage.get_episode_metadata(dataset.episode_indices)
for episode, episode_metadata in zip(dataset.iterate_episodes(), metadatas):
seed = episode_metadata.get("seed")
if episode.id == 0 and seed is None:
raise ValueError("Cannot reproduce episodes with unknown seed.")

env.reset(seed=seed, options=episode_metadata.get("options"))
images.append(env.render())
for step_id in range(len(episode)):
act = _space_at(episode.actions, step_id)
env.step(act)
images.append(env.render())
if len(images) > num_frames:
env.close()
gif_file = os.path.join(path, f"{dataset_id}.gif")
imageio.mimsave(gif_file, images, fps=fps)
return gif_file

episode_id += 1

env.close()

gif_file = os.path.join(path, f"{dataset_id}.gif")
imageio.mimsave(gif_file, images, fps=fps)
return gif_file
raise ValueError("There are not enough steps in the dataset.")


def main(argv):
Expand Down
65 changes: 42 additions & 23 deletions minari/dataset/_storages/hdf5_storage.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,12 +74,7 @@ def get_episode_metadata(self, episode_indices: Iterable[int]) -> Iterable[Dict]
ep_group = file[f"episode_{ep_idx}"]
assert isinstance(ep_group, h5py.Group)
metadata: dict = dict(ep_group.attrs)
if "option_names" in metadata:
metadata["options"] = {}
for name in metadata["option_names"]:
metadata["options"][name] = metadata[f"options/{name}"]
del metadata[f"options/{name}"]
del metadata["option_names"]
metadata = unflatten_dict(metadata)
if metadata.get("seed") is not None:
metadata["seed"] = int(metadata["seed"])

Expand Down Expand Up @@ -114,19 +109,6 @@ def _decode_space(
assert isinstance(hdf_ref, h5py.Dataset)
return hdf_ref[()]

def _decode_dict(self, dict_group: h5py.Group) -> Dict:
result = {}
for key, value in dict_group.items():
if isinstance(value, h5py.Group):
result[key] = self._decode_dict(value)
elif isinstance(value, h5py.Dataset):
result[key] = value[()]
else:
raise ValueError(
"Infos are in an unsupported format; see Minari documentation for supported formats."
)
return result

def get_episodes(self, episode_indices: Iterable[int]) -> Iterable[dict]:
with h5py.File(self._file_path, "r") as file:
for ep_idx in episode_indices:
Expand All @@ -136,7 +118,7 @@ def get_episodes(self, episode_indices: Iterable[int]) -> Iterable[dict]:
if "infos" in ep_group:
info_group = ep_group["infos"]
assert isinstance(info_group, h5py.Group)
infos = self._decode_dict(info_group)
infos = _decode_info(info_group)

ep_dict = {
"id": ep_idx,
Expand Down Expand Up @@ -171,9 +153,8 @@ def update_episodes(self, episodes: Iterable[EpisodeBuffer]):
episode_group.attrs["seed"] = eps_buff.seed
if eps_buff.options is not None:
assert "options" not in episode_group.attrs.keys()
for name, option in eps_buff.options.items():
episode_group.attrs[f"options/{name}"] = option
episode_group.attrs["option_names"] = list(eps_buff.options.keys())
flatten_option = flatten_dict(eps_buff.options, "options")
episode_group.attrs.update(flatten_option)

episode_steps = len(eps_buff.rewards)
episode_group.attrs["total_steps"] = episode_steps
Expand Down Expand Up @@ -243,3 +224,41 @@ def _add_episode_to_group(episode_buffer: Dict, episode_group: h5py.Group):
episode_group.create_dataset(
key, data=data, dtype=dtype, chunks=True, maxshape=(None, *dshape)
)


def _decode_info(info_group: h5py.Group) -> Dict:
result = {}
for key, value in info_group.items():
if isinstance(value, h5py.Group):
result[key] = _decode_info(value)
elif isinstance(value, h5py.Dataset):
result[key] = value[()]
else:
raise ValueError(
"Infos are in an unsupported format; see Minari documentation for supported formats."
)
return result


def flatten_dict(d: Dict, parent_key: str) -> Dict:
flatten_d = {}
for k, v in d.items():
new_key = f"{parent_key}/{k}"
if isinstance(v, dict):
flatten_d.update(flatten_dict(v, new_key))
else:
flatten_d[new_key] = v
return flatten_d


def unflatten_dict(d: Dict) -> Dict:
result = {}
for k, v in d.items():
keys = k.split("/")
current = result
for key in keys[:-1]:
if key not in current:
current[key] = {}
current = current[key]
current[keys[-1]] = v
return result
Loading