-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add TensorWaves benchmark results (pytest) benchmark result for 379e96a
- Loading branch information
github-action-benchmark
committed
Dec 2, 2023
1 parent
87ef1e3
commit 2782a71
Showing
1 changed file
with
137 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1699481572947, | ||
"lastUpdate": 1701536455516, | ||
"repoUrl": "https://github.com/ComPWA/tensorwaves", | ||
"entries": { | ||
"TensorWaves benchmark results": [ | ||
|
@@ -15422,6 +15422,142 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 673.9578631999905 msec\nrounds: 5" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "Remco de Boer", | ||
"username": "redeboer" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "379e96a4eb99b14ab0b542333caa470897fd55e4", | ||
"message": "MAINT: update pip constraints and pre-commit (#505)\n\nCo-authored-by: GitHub <[email protected]>\r\nCo-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>", | ||
"timestamp": "2023-12-02T17:57:59+01:00", | ||
"tree_id": "a01dad92e1a0d331fbecc3f5a8d821b9d79b6f7b", | ||
"url": "https://github.com/ComPWA/tensorwaves/commit/379e96a4eb99b14ab0b542333caa470897fd55e4" | ||
}, | ||
"date": 1701536454371, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-jax]", | ||
"value": 0.43351998344026665, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.306698740999991 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-numpy]", | ||
"value": 0.3620214414084326, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.7622673289999966 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_data[10000-tf]", | ||
"value": 0.39674866767978684, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 2.520487355 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/ampform.py::TestJPsiToGammaPiPi::test_fit[10000-jax]", | ||
"value": 0.709063592106619, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0", | ||
"extra": "mean: 1.4103107409999893 sec\nrounds: 1" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-jax]", | ||
"value": 24.64856967996179, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0008227520521509084", | ||
"extra": "mean: 40.570305416665065 msec\nrounds: 12" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-numpy]", | ||
"value": 170.35885752628204, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00021851852682061815", | ||
"extra": "mean: 5.869961882350176 msec\nrounds: 153" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-numba]", | ||
"value": 5.3585144875786295, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.003425661398260443", | ||
"extra": "mean: 186.61888520000502 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_data[3000-tf]", | ||
"value": 97.12878188278886, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0005054390072765544", | ||
"extra": "mean: 10.295609402440155 msec\nrounds: 82" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-jax]", | ||
"value": 9.546827029856374, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0005995583574423657", | ||
"extra": "mean: 104.74684383331123 msec\nrounds: 6" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-numpy]", | ||
"value": 9.870364313074425, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0009057297089250766", | ||
"extra": "mean: 101.31338299999584 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-numba]", | ||
"value": 9.951731841525277, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00040962233190925334", | ||
"extra": "mean: 100.48502270000199 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-Minuit2-tf]", | ||
"value": 1.2644453044976576, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.001851648246884397", | ||
"extra": "mean: 790.8606220000024 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-jax]", | ||
"value": 8.941677324863122, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000438305504665258", | ||
"extra": "mean: 111.83584059999703 msec\nrounds: 5" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-numpy]", | ||
"value": 9.50387553408228, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.002401491955524864", | ||
"extra": "mean: 105.22023320000926 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-numba]", | ||
"value": 9.558419029770253, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0003437729349852069", | ||
"extra": "mean: 104.6198117999893 msec\nrounds: 10" | ||
}, | ||
{ | ||
"name": "benchmarks/expression.py::test_fit[1000-ScipyMinimizer-tf]", | ||
"value": 1.4606351669769317, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.001578339506802254", | ||
"extra": "mean: 684.6336597999994 msec\nrounds: 5" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|