Skip to content

Commit

Permalink
Merge pull request #392 from CliMA/aj/named_tuple_cm2_evap
Browse files Browse the repository at this point in the history
Aerosol constructor changes
  • Loading branch information
trontrytel committed May 9, 2024
2 parents a60366d + b4a8a90 commit 64f64b4
Show file tree
Hide file tree
Showing 14 changed files with 93 additions and 103 deletions.
10 changes: 10 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,16 @@ CloudMicrophysics.jl Release Notes
main
------
<!--- # Add changes since the most recent release here --->


v0.20.0
------

- API change:
- return a named tuple in 2-moment microphysics rain evaporation
- changed aerosol size distribution constructor
- [#392](https://github.com/CliMA/CloudMicrophysics.jl/pull/392)

- Added AIDA homogeneous ice nucleation data as artifacts ([#388](https://github.com/CliMA/CloudMicrophysics.jl/pull/388))

- Generalize calibration functions in ice_nucleation_2024 ([#380](https://github.com/CliMA/CloudMicrophysics.jl/pull/380))
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "CloudMicrophysics"
uuid = "6a9e3e04-43cd-43ba-94b9-e8782df3c71b"
authors = ["Climate Modeling Alliance"]
version = "0.19.0"
version = "0.20.0"

[deps]
ClimaParams = "5c42b081-d73a-476f-9059-fd94b934656c"
Expand Down
21 changes: 0 additions & 21 deletions docs/src/plots/ARGplots.jl
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,6 @@ function make_ARG_figX(X)
if X in (1, 4)
vol_mixing_ratios_1 = (1.0,)
mass_mixing_ratios_1 = (1.0,)
n_components_1 = 1
if v_B
paper_mode_1 = AM.Mode_B(
r_dry_1,
Expand All @@ -81,7 +80,6 @@ function make_ARG_figX(X)
(sulfate.M,),
(sulfate.ν,),
(sulfate.ρ,),
n_components_1,
)
else
paper_mode_1 = AM.Mode_κ(
Expand All @@ -92,15 +90,13 @@ function make_ARG_figX(X)
mass_mixing_ratios_1,
(sulfate.M,),
(sulfate.κ,),
n_components_1,
)
end
end

if X in (2, 3, 5)
vol_mixing_ratios_1 = (1.0, 0.0)
mass_mixing_ratios_1 = (1.0, 0.0)
n_components_1 = 2
if v_B
paper_mode_1 = AM.Mode_B(
r_dry_1,
Expand All @@ -112,7 +108,6 @@ function make_ARG_figX(X)
(sulfate.M, M_insol),
(sulfate.ν, ν_insol),
(sulfate.ρ, ρ_insol),
n_components_1,
)
else
paper_mode_1 = AM.Mode_κ(
Expand All @@ -123,7 +118,6 @@ function make_ARG_figX(X)
mass_mixing_ratios_1,
(sulfate.M, M_insol),
(sulfate.κ, κ_insol),
n_components_1,
)
end
end
Expand All @@ -139,7 +133,6 @@ function make_ARG_figX(X)
w = 0.5 # vertical velocity, m/s
r_dry_2 = 0.05 * 1e-6 # um
N_2 = range(100, stop = 5000, length = len) * 1e6 # 1/m3
n_components_2 = 1 # 1 mode
mass_mixing_ratios_2 = (1.0,) # all sulfate
vol_mixing_ratios_2 = (1.0,) # all sulfate

Expand All @@ -155,7 +148,6 @@ function make_ARG_figX(X)
(sulfate.M,),
(sulfate.ν,),
(sulfate.ρ,),
n_components_2,
)
else
paper_mode_2 = AM.Mode_κ(
Expand All @@ -166,7 +158,6 @@ function make_ARG_figX(X)
mass_mixing_ratios_2,
(sulfate.M,),
(sulfate.κ,),
n_components_2,
)
end
AD = AM.AerosolDistribution((paper_mode_1, paper_mode_2))
Expand Down Expand Up @@ -195,7 +186,6 @@ function make_ARG_figX(X)
w = 0.5 # vertical velocity, m/s
r_dry_2 = 0.05 * 1e-6 # um
N_2 = range(100, stop = 5000, length = len) * 1e6 # 1/m3
n_components_2 = 2 # 2 modes
mass_mixing_ratios_2 = (0.1, 0.9) # 10% sulfate, 90% insoluble
vol_mixing_ratios_2 = mass2vol(mass_mixing_ratios_2)

Expand All @@ -211,7 +201,6 @@ function make_ARG_figX(X)
(sulfate.M, M_insol),
(sulfate.ν, ν_insol),
(sulfate.ρ, ρ_insol),
n_components_2,
)
else
paper_mode_2 = AM.Mode_κ(
Expand All @@ -222,7 +211,6 @@ function make_ARG_figX(X)
mass_mixing_ratios_2,
(sulfate.M, M_insol),
(sulfate.κ, κ_insol),
n_components_2,
)
end
AD = AM.AerosolDistribution((paper_mode_1, paper_mode_2))
Expand Down Expand Up @@ -251,7 +239,6 @@ function make_ARG_figX(X)
w = 0.5 # vertical velocity, m/s
r_dry_2 = 0.05 * 1e-6 # um
N_2 = 100 * 1e6 # 1/m3
n_components_2 = 2 # 2 modes
# ranging from 10% to 100% sulfate, 90% to 0% insoluble
xvar = range(0.1, stop = 1, length = len)
mass_mixing_ratios_2 = [(i, 1 - i) for i in xvar]
Expand All @@ -269,7 +256,6 @@ function make_ARG_figX(X)
(sulfate.M, M_insol),
(sulfate.ν, ν_insol),
(sulfate.ρ, ρ_insol),
n_components_2,
)
else
paper_mode_2 = AM.Mode_κ(
Expand All @@ -280,7 +266,6 @@ function make_ARG_figX(X)
mmr2i,
(sulfate.M, M_insol),
(sulfate.κ, κ_insol),
n_components_2,
)
end
AD = AM.AerosolDistribution((paper_mode_1, paper_mode_2))
Expand Down Expand Up @@ -308,7 +293,6 @@ function make_ARG_figX(X)
w = 0.5 # vertical velocity, m/s
r_dry_2 = range(0.01, stop = 0.5, length = len) * 1e-6 # um
N_2 = 100 * 1e6 # 1/m3
n_components_2 = 1 # 1 mode
mass_mixing_ratios_2 = (1.0,) # all sulfate
vol_mixing_ratios_2 = mass2vol(mass_mixing_ratios_2)

Expand All @@ -324,7 +308,6 @@ function make_ARG_figX(X)
(sulfate.M,),
(sulfate.ν,),
(sulfate.ρ,),
n_components_2,
)
else
paper_mode_2 = AM.Mode_κ(
Expand All @@ -335,7 +318,6 @@ function make_ARG_figX(X)
mass_mixing_ratios_2,
(sulfate.M,),
(sulfate.κ,),
n_components_2,
)
end
AD = AM.AerosolDistribution((paper_mode_1, paper_mode_2))
Expand Down Expand Up @@ -364,7 +346,6 @@ function make_ARG_figX(X)
w = range(0.01, stop = 5, length = len) # vertical velocity, m/s
r_dry_2 = 0.05 * 1e-6 # um
N_2 = 100 * 1e6 # 1/m3
n_components_2 = 2 # 2 modes
mass_mixing_ratios_2 = (0.1, 0.9) # 10% sulfate, 90% insoluble
vol_mixing_ratios_2 = mass2vol(mass_mixing_ratios_2)

Expand All @@ -379,7 +360,6 @@ function make_ARG_figX(X)
(sulfate.M, M_insol),
(sulfate.ν, ν_insol),
(sulfate.ρ, ρ_insol),
n_components_2,
)
else
paper_mode_2 = AM.Mode_κ(
Expand All @@ -390,7 +370,6 @@ function make_ARG_figX(X)
mass_mixing_ratios_2,
(sulfate.M, M_insol),
(sulfate.κ, κ_insol),
n_components_2,
)
end
AD = AM.AerosolDistribution((paper_mode_1, paper_mode_2))
Expand Down
4 changes: 0 additions & 4 deletions docs/src/plots/ARGplots_fig1.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ N_1 = 100.0 * 1e6 # 1/m3
# Sulfate - universal parameters
sulfate = CMP.Sulfate(FT)

n_components_1 = 1
mass_fractions_1 = (1.0,)
paper_mode_1_B = AM.Mode_B(
r_dry,
Expand All @@ -49,15 +48,13 @@ paper_mode_1_B = AM.Mode_B(
(sulfate.M,),
(sulfate.ν,),
(sulfate.ρ,),
n_components_1,
)

N_2_range = range(0, stop = 5000 * 1e6, length = 100)
N_act_frac_B = Vector{Float64}(undef, 100)

it = 1
for N_2 in N_2_range
n_components_2 = 1
mass_fractions_2 = (1.0,)
paper_mode_2_B = AM.Mode_B(
r_dry,
Expand All @@ -69,7 +66,6 @@ for N_2 in N_2_range
(sulfate.M,),
(sulfate.ν,),
(sulfate.ρ,),
n_components_2,
)
AD_B = AM.AerosolDistribution((paper_mode_1_B, paper_mode_2_B))
N_act_frac_B[it] =
Expand Down
26 changes: 13 additions & 13 deletions docs/src/plots/RainEvapoartionSB2006.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ function rain_evaporation_CPU(SB2006, aps, tps, q, q_rai, ρ, N_rai, T)
evap_rate_1 = min(FT(0), FT(2) * FT(π) * G * S * N_rai * Dr * Fv1 / ρ)
end

return (evap_rate_0, evap_rate_1)
return (; evap_rate_0, evap_rate_1)
end

qᵥ = FT(1e-2)
Expand All @@ -66,21 +66,21 @@ Nᵣ_range = range(1e6, stop = 1e9, length = 1000)
T_range = range(273.15, stop = 273.15 + 50, length = 1000)

#! format: off
evap_qᵣ_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T)[1] for _qᵣ in qᵣ_range]
evap_Nᵣ_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T)[1] for _Nᵣ in Nᵣ_range]
evap_T_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T)[1] for _T in T_range]
evap_qᵣ_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T).evap_rate_0 for _qᵣ in qᵣ_range]
evap_Nᵣ_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T).evap_rate_0 for _Nᵣ in Nᵣ_range]
evap_T_0 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T).evap_rate_0 for _T in T_range]

evap_qᵣ_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T)[1] for _qᵣ in qᵣ_range]
evap_Nᵣ_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T)[1] for _Nᵣ in Nᵣ_range]
evap_T_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T)[1] for _T in T_range]
evap_qᵣ_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T).evap_rate_0 for _qᵣ in qᵣ_range]
evap_Nᵣ_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T).evap_rate_0 for _Nᵣ in Nᵣ_range]
evap_T_0n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T).evap_rate_0 for _T in T_range]

evap_qᵣ_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T)[2] for _qᵣ in qᵣ_range]
evap_Nᵣ_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T)[2] for _Nᵣ in Nᵣ_range]
evap_T_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T)[2] for _T in T_range]
evap_qᵣ_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T).evap_rate_1 for _qᵣ in qᵣ_range]
evap_Nᵣ_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T).evap_rate_1 for _Nᵣ in Nᵣ_range]
evap_T_3 = [rain_evaporation_CPU(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T).evap_rate_1 for _T in T_range]

evap_qᵣ_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T)[2] for _qᵣ in qᵣ_range]
evap_Nᵣ_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T)[2] for _Nᵣ in Nᵣ_range]
evap_T_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T)[2] for _T in T_range]
evap_qᵣ_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, _qᵣ, ρ, Nᵣ, T).evap_rate_1 for _qᵣ in qᵣ_range]
evap_Nᵣ_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, _Nᵣ, T).evap_rate_1 for _Nᵣ in Nᵣ_range]
evap_T_3n = [CM2.rain_evaporation(SB2006, aps, tps, q, qᵣ, ρ, Nᵣ, _T).evap_rate_1 for _T in T_range]

fig = MK.Figure(resolution = (800, 600))

Expand Down
6 changes: 2 additions & 4 deletions ext/Common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,6 @@ function read_aerosol_dataset(
df = filter(row -> row.S_max > 0 && row.S_max < 0.2, initial_data)
selected_columns_X = []
num_modes = get_num_modes(df)
@info(num_modes)
for i in 1:num_modes
append!(
selected_columns_X,
Expand Down Expand Up @@ -97,7 +96,7 @@ function get_ARG_act_frac(
push!(mode_kappas, data_row[Symbol("mode_$(i)_kappa")])
end
ad = AM.AerosolDistribution(
Tuple(
(
AM.Mode_κ(
mode_means[i],
mode_stdevs[i],
Expand All @@ -106,9 +105,8 @@ function get_ARG_act_frac(
FT(1),
FT(0),
FT(mode_kappas[i]),
1,
) for i in 1:num_modes
),
)...,
)
pv0 = TD.saturation_vapor_pressure(tps, FT(T), TD.Liquid())
vapor_mix_ratio = pv0 / TD.Parameters.molmass_ratio(tps) / (p - pv0)
Expand Down
12 changes: 6 additions & 6 deletions src/AerosolActivation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ function mean_hygroscopicity_parameter(
) where {N, T <: AM.Mode_B}
return ntuple(Val(AM.n_modes(ad))) do i
FT = eltype(ap)
mode_i = ad.Modes[i]
mode_i = ad.modes[i]

nom = FT(0)
@inbounds for j in 1:(AM.n_components(mode_i))
Expand All @@ -85,7 +85,7 @@ function mean_hygroscopicity_parameter(

return ntuple(Val(AM.n_modes(ad))) do i
FT = eltype(ap)
mode_i = ad.Modes[i]
mode_i = ad.modes[i]

result = FT(0)
@inbounds for j in 1:(AM.n_components(mode_i))
Expand Down Expand Up @@ -114,7 +114,7 @@ function critical_supersaturation(
hygro = mean_hygroscopicity_parameter(ap, ad)

return ntuple(Val(AM.n_modes(ad))) do i
2 / sqrt(hygro[i]) * (A / 3 / ad.Modes[i].r_dry)^FT(3 / 2)
2 / sqrt(hygro[i]) * (A / 3 / ad.modes[i].r_dry)^FT(3 / 2)
end
end

Expand Down Expand Up @@ -163,7 +163,7 @@ function max_supersaturation(
tmp::FT = FT(0)
@inbounds for i in 1:AM.n_modes(ad)

mode_i = ad.Modes[i]
mode_i = ad.modes[i]

f::FT = ap.f1 * exp(ap.f2 * (log(mode_i.stdev))^2)
g::FT = ap.g1 + ap.g2 * log(mode_i.stdev)
Expand Down Expand Up @@ -207,7 +207,7 @@ function N_activated_per_mode(

return ntuple(Val(AM.n_modes(ad))) do i

mode_i = ad.Modes[i]
mode_i = ad.modes[i]
u_i::FT = 2 * log(sm[i] / smax) / 3 / sqrt(2) / log(mode_i.stdev)

mode_i.N * (1 / 2) * (1 - SF.erf(u_i))
Expand Down Expand Up @@ -244,7 +244,7 @@ function M_activated_per_mode(

return ntuple(Val(AM.n_modes(ad))) do i

mode_i = ad.Modes[i]
mode_i = ad.modes[i]

avg_molar_mass_i = FT(0)
@inbounds for j in 1:(AM.n_components(mode_i))
Expand Down
Loading

2 comments on commit 64f64b4

@trontrytel
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/106495

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.20.0 -m "<description of version>" 64f64b45083ad74d3380de1f759bdd696691568d
git push origin v0.20.0

Please sign in to comment.