Paper: TrackNetV2: Efficient Shuttlecock Tracking Network
Original Project(tensorflow): https://nol.cs.nctu.edu.tw:234/open-source/TrackNetv2
官方上传的标注工具、数据集均已失效。del>The author has now reuploaded the dataset。
Paper reading:TrackNetV2论文记录与pytorch复现
git apply tf2torch/diff.txt
python detect.py --source xxx.mp4 --weights ./tf2torch/track.pt --view-img # TrackNetv2/3_in_3_out/model906_30
python detect.py --source xxx.mp4 --weights xxx.pt --view-img
# training from scratch
python train.py --data data/match.yaml
# training from pretrain weight
python train.py --weights xxx.pt --data data/match.yaml
# resume training
python train.py --data data/match.yaml --resume
python val.py --weights xxx.pt --data data/match.yaml
# Server
python deploy/app.py --weights xxx.pt
# Client
python deploy/test_app.py
# TrackNetV2 dataset
# /home/chg/Badminton/TrackNetV2
# - Amateur
# - Professional
# - Test
python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Amateur
python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Professional
python tools/handle_tracknet_dataset.py /home/chg/Badminton/TrackNetV2/Test
python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Amateur
python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Professional
python tools/Frame_Generator_rally.py /home/chg/Badminton/TrackNetV2/Test
# TrackNetV2 dataset config : data/match.yaml
path: /home/chg/Documents/Badminton/TrackNetV2
train:
- Amateur
- Professional
val:
- Test
# also you can use follow config for testing
train:
- Test/match1/images/1_05_02
val:
- Test/match2/images/1_03_03
# or
train:
- Test/match1
val:
- Test/match2
https://github.com/mareksubocz/TrackNet