Skip to content

Commit

Permalink
finish p2
Browse files Browse the repository at this point in the history
  • Loading branch information
Caruso33 committed Aug 22, 2021
1 parent 05f63ef commit 9be0ed3
Show file tree
Hide file tree
Showing 35 changed files with 3,081 additions and 11 deletions.
212 changes: 212 additions & 0 deletions udacity_deep_reinforcement_learning/11_ddpg/ddpg-bipedal/DDPG.ipynb

Large diffs are not rendered by default.

189 changes: 189 additions & 0 deletions udacity_deep_reinforcement_learning/11_ddpg/ddpg-bipedal/ddpg_agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
import numpy as np
import random
import copy
from collections import namedtuple, deque

from model import Actor, Critic

import torch
import torch.nn.functional as F
import torch.optim as optim

BUFFER_SIZE = int(1e6) # replay buffer size
BATCH_SIZE = 128 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-4 # learning rate of the actor
LR_CRITIC = 3e-4 # learning rate of the critic
WEIGHT_DECAY = 0.0001 # L2 weight decay

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class Agent():
"""Interacts with and learns from the environment."""

def __init__(self, state_size, action_size, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)

# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)

# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)

# Noise process
self.noise = OUNoise(action_size, random_seed)

# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)

def step(self, state, action, reward, next_state, done):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)

# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)

def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
action += self.noise.sample()
return np.clip(action, -1, 1)

def reset(self):
self.noise.reset()

def learn(self, experiences, gamma):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences

# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()

# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()

# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)

def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)

class OUNoise:
"""Ornstein-Uhlenbeck process."""

def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()

def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)

def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
self.state = x + dx
return self.state

class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""

def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)

def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)

def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)

states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)

return (states, actions, rewards, next_states, dones)

def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
74 changes: 74 additions & 0 deletions udacity_deep_reinforcement_learning/11_ddpg/ddpg-bipedal/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)

class Actor(nn.Module):
"""Actor (Policy) Model."""

def __init__(self, state_size, action_size, seed, fc_units=256):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc_units)
self.fc2 = nn.Linear(fc_units, action_size)
self.reset_parameters()

def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(-3e-3, 3e-3)

def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.relu(self.fc1(state))
return F.tanh(self.fc2(x))


class Critic(nn.Module):
"""Critic (Value) Model."""

def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=256, fc3_units=128):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, fc3_units)
self.fc4 = nn.Linear(fc3_units, 1)
self.reset_parameters()

def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(*hidden_init(self.fc3))
self.fc4.weight.data.uniform_(-3e-3, 3e-3)

def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.leaky_relu(self.fcs1(state))
x = torch.cat((xs, action), dim=1)
x = F.leaky_relu(self.fc2(x))
x = F.leaky_relu(self.fc3(x))
return self.fc4(x)
196 changes: 196 additions & 0 deletions udacity_deep_reinforcement_learning/11_ddpg/ddpg-pendulum/DDPG.ipynb

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
[//]: # (Image References)

[image1]: https://user-images.githubusercontent.com/10624937/42135610-c37e0292-7d12-11e8-8228-4d3585f8c026.gif "Trained Agent"

# Actor-Critic Methods

### Instructions

Open `DDPG.ipynb` to see an implementation of DDPG with OpenAI Gym's Pendulum environment.

### Results

![Trained Agent][image1]
Binary file not shown.
Binary file not shown.
Loading

0 comments on commit 9be0ed3

Please sign in to comment.