Skip to content

Latest commit

 

History

History
51 lines (48 loc) · 1.88 KB

README.md

File metadata and controls

51 lines (48 loc) · 1.88 KB

CARLA and Autoware.Auto ROS 2 bridge

Environment

Ubuntu ROS 2 Autoware Nvidia Driver CUDA Version
20.04 galactic auto/(source installation) 470.63.01 11.4+

Minimum Hardware Requirements

CPU RAM GPU
8 cores 16 GB NVIDIA 4GB RAM

GPU is not required to run basic functionality, it is mandatory to enable the following neural network related functions:

  • LiDAR based object detection
  • Camera based object detection
  • Traffic light detection and classification

Installation steps

  1. Autoware.Auto source installation (https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/installation-no-ade.html)
  2. CARLA 0.9.13 source installation (debian, https://carla.readthedocs.io/en/latest/start_quickstart/)
  3. carla-auto-bridge (this repository)
mkdir -p ros2_ws/src
cd ros2_ws/src
git clone [email protected]:CL2-UWaterloo/carla-auto-bridge.git --recursive
  1. Download CARLA maps (https://bitbucket.org/carla-simulator/autoware-contents/src/master/maps/), name accordingly
point_cloud/Town01.pcd -> Town01/pointcloud_map.pcd
vector_maps/lanelet2/Town01.osm -> Town01/lanelet2_map.osm

Build

cd ros2_ws
colcon build --symlink-install

Quick Start

  1. Run CARLA, load a map
/opt/carla-simulator/CarlaUE4.sh
python3 /opt/carla-simulator/PythonAPI/util/config.py -m Town01
  1. Launch carla_ros_bridge, autoware.auto bridge
ros2 launch carla_ros_bridge carla_ros_bridge_with_example_ego_vehicle.launch.py
ros2 launch autoware_bridge autoware_bridge_launch.xml 
ros2 launch autoware_bridge autoware_launch.xml map_path:=<path-to-map-dir>/Town01 vehicle_model:=sample_vehicle sensor_model:=sample_sensor_kit
  1. Set initial pose
  2. Set goal position
  3. Wait for planning
  4. Engage (use web interface or Rviz plugin (AutowareStatePanel))