Skip to content

Commit

Permalink
Update graded.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
yuanyi-350 committed Oct 27, 2024
1 parent b9c7a56 commit f258f7f
Showing 1 changed file with 9 additions and 10 deletions.
19 changes: 9 additions & 10 deletions FilteredRing/graded.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,13 @@ def F_lt (i : ι) := ⨆ k < i, F k

def induced_fil (R₀ : ι → AddSubgroup R) : ι → AddSubgroup R := fun i ↦ F_le R₀ i

instance Graded_to_Filtered (R₀ : ι → AddSubgroup R) [GradedRing R₀] : FilteredRing (induced_fil R₀) where
instance Graded_to_Filtered (R₀ : ι → AddSubgroup R) [GradedRing R₀] :
FilteredRing (induced_fil R₀) where
mono := by
intro i j h x hx
have : ⨆ k ≤ i, R₀ k ≤ ⨆ k ≤ j, R₀ k :=
have : ∀ k ≤ i, R₀ k ≤ ⨆ k, ⨆ (_ : k ≤ j), R₀ k := fun k hk ↦ le_biSup R₀ (Preorder.le_trans k i j hk h)
have : ∀ k ≤ i, R₀ k ≤ ⨆ k, ⨆ (_ : k ≤ j), R₀ k :=
fun k hk ↦ le_biSup R₀ (Preorder.le_trans k i j hk h)
iSup_le (fun k ↦ iSup_le (fun t ↦ this k t))
exact this hx
one :=
Expand All @@ -43,8 +45,7 @@ instance Graded_to_Filtered (R₀ : ι → AddSubgroup R) [GradedRing R₀] : Fi
neg_mem' := by simp only [Set.mem_setOf_eq, mul_neg, neg_mem_iff, imp_self, implies_true]}
have : induced_fil R₀ j ≤ T := by
simp only [induced_fil, F_le, iSup_le_iff]
intro l hl
intro v hv
intro l hl v hv
simp only [AddSubgroup.mem_mk, Set.mem_setOf_eq, T]
have : R₀ (k + l) ≤ ⨆ k, ⨆ (_ : k ≤ i + j), R₀ k := by
apply le_biSup
Expand Down Expand Up @@ -74,7 +75,8 @@ instance : FilteredAlgebra (induced_fil' 𝒜) where
mono := by
intro i j h x hx
have : ⨆ k ≤ i, 𝒜 k ≤ ⨆ k ≤ j, 𝒜 k :=
have : ∀ k ≤ i, 𝒜 k ≤ ⨆ k, ⨆ (_ : k ≤ j), 𝒜 k := fun k hk ↦ le_biSup 𝒜 (Preorder.le_trans k i j hk h)
have : ∀ k ≤ i, 𝒜 k ≤ ⨆ k, ⨆ (_ : k ≤ j), 𝒜 k :=
fun k hk ↦ le_biSup 𝒜 (Preorder.le_trans k i j hk h)
iSup_le (fun k ↦ iSup_le (fun t ↦ this k t))
exact this hx
one :=
Expand Down Expand Up @@ -106,7 +108,6 @@ instance : FilteredAlgebra (induced_fil' 𝒜) where
apply le_biSup
exact hl
exact t2 (Submodule.smul_mem (𝒜 l) r hq)
show a * y ∈ P
simp only [Set.mem_setOf_eq] at ha
exact this ha
}
Expand All @@ -120,7 +121,7 @@ instance : FilteredAlgebra (induced_fil' 𝒜) where
zero_mem' := by simp only [Set.mem_setOf_eq, mul_zero, zero_mem]
smul_mem' := by
intro c x hx
simp at hx ⊢
simp only [Set.mem_setOf_eq, Algebra.mul_smul_comm] at hx ⊢
let P : Submodule R A := {
carrier := {p | c • p ∈ induced_fil' 𝒜 (i + j)}
add_mem' := fun ha hb ↦ by simp only [Set.mem_setOf_eq, smul_add, add_mem ha.out hb.out]
Expand All @@ -136,13 +137,11 @@ instance : FilteredAlgebra (induced_fil' 𝒜) where
apply le_biSup
exact hl
exact t2 (Submodule.smul_mem (𝒜 l) c hq)
show w * x ∈ P
exact this hx}

have : induced_fil' 𝒜 j ≤ T := by
simp only [induced_fil', F_le', iSup_le_iff]
intro l hl
intro v hv
intro l hl v hv
simp only [AddSubgroup.mem_mk, Set.mem_setOf_eq, T]
have : 𝒜 (k + l) ≤ ⨆ k, ⨆ (_ : k ≤ i + j), 𝒜 k := by
apply le_biSup
Expand Down

0 comments on commit f258f7f

Please sign in to comment.