Skip to content

BarryYin/Building-Agentic-RAG-with-Llamaindex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Building-Agentic-RAG-with-Llamaindex

from deeplearning.ai by Jerry Liu, who is CEO at LlamaIndex

介绍

本课程来自deeplearning.ai 本人自学所用 会有部分注释、笔记、拓展

关于课程

该课程详细的介绍了Llamaindex是如何执行RAG的,从执行效果来看,Llamaindex已经配置了整套的RAG相关的文档加载、Embedding量化、以及查询和总结。 并且设定了Agent模式,可以自动依据查询的内容,自主选择最佳工具执行。

  1. L0_ready.ipynb 检查配置文件
  2. L1_Router_Engine.ipynb 自动选择调用查询引擎
  3. L3_Building_an_Agent_Reasoning_Loop.ipynb 设置一个Agent,reason+rag
  4. L4_Building_a_Multi-Document_Agent.ipynb 复杂的多文档Agent

安装

需要先安装requirements.txt,采用清华源.

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install -r requirements.txt

之后就可以运行L0-L4文件了。

更多资源

  1. Custom agent: https://docs.llamaindex.ai/en/stable/examples/agent/custom_agent/

  2. Community-built Agents (LlamaHub): https://llamahub.ai/?tab=agent

  3. Advanced document parsing with LlamaParse: https:/cloud.llamaindex.ai/

点赞

如果你觉得本pr不错,请给个Star

About

from deeplearning.ai by Jerry Liu, who is CEO at LlamaIndex

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published