-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
train.py
326 lines (264 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# original author: signatrix
# adapted from https://github.com/signatrix/efficientdet/blob/master/train.py
# modified by Zylo117
import argparse
import datetime
import os
import traceback
import numpy as np
import torch
import yaml
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.autonotebook import tqdm
from backbone import EfficientDetBackbone
from efficientdet.dataset import CocoDataset, Resizer, Normalizer, Augmenter, collater
from efficientdet.loss import FocalLoss
from utils.sync_batchnorm import patch_replication_callback
from utils.utils import replace_w_sync_bn, CustomDataParallel, get_last_weights, init_weights, boolean_string
class Params:
def __init__(self, project_file):
self.params = yaml.safe_load(open(project_file).read())
def __getattr__(self, item):
return self.params.get(item, None)
def get_args():
parser = argparse.ArgumentParser('Yet Another EfficientDet Pytorch: SOTA object detection network - Zylo117')
parser.add_argument('-p', '--project', type=str, default='coco', help='project file that contains parameters')
parser.add_argument('-c', '--compound_coef', type=int, default=0, help='coefficients of efficientdet')
parser.add_argument('-n', '--num_workers', type=int, default=12, help='num_workers of dataloader')
parser.add_argument('--batch_size', type=int, default=12, help='The number of images per batch among all devices')
parser.add_argument('--head_only', type=boolean_string, default=False,
help='whether finetunes only the regressor and the classifier, '
'useful in early stage convergence or small/easy dataset')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--optim', type=str, default='adamw', help='select optimizer for training, '
'suggest using \'admaw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases')
parser.add_argument('--save_interval', type=int, default=500, help='Number of steps between saving')
parser.add_argument('--es_min_delta', type=float, default=0.0,
help='Early stopping\'s parameter: minimum change loss to qualify as an improvement')
parser.add_argument('--es_patience', type=int, default=0,
help='Early stopping\'s parameter: number of epochs with no improvement after which training will be stopped. Set to 0 to disable this technique.')
parser.add_argument('--data_path', type=str, default='datasets/', help='the root folder of dataset')
parser.add_argument('--log_path', type=str, default='logs/')
parser.add_argument('-w', '--load_weights', type=str, default=None,
help='whether to load weights from a checkpoint, set None to initialize, set \'last\' to load last checkpoint')
parser.add_argument('--saved_path', type=str, default='logs/')
parser.add_argument('--debug', type=boolean_string, default=False,
help='whether visualize the predicted boxes of training, '
'the output images will be in test/')
args = parser.parse_args()
return args
class ModelWithLoss(nn.Module):
def __init__(self, model, debug=False):
super().__init__()
self.criterion = FocalLoss()
self.model = model
self.debug = debug
def forward(self, imgs, annotations, obj_list=None):
_, regression, classification, anchors = self.model(imgs)
if self.debug:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations,
imgs=imgs, obj_list=obj_list)
else:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations)
return cls_loss, reg_loss
def train(opt):
params = Params(f'projects/{opt.project}.yml')
if params.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
opt.saved_path = opt.saved_path + f'/{params.project_name}/'
opt.log_path = opt.log_path + f'/{params.project_name}/tensorboard/'
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
training_params = {'batch_size': opt.batch_size,
'shuffle': True,
'drop_last': True,
'collate_fn': collater,
'num_workers': opt.num_workers}
val_params = {'batch_size': opt.batch_size,
'shuffle': False,
'drop_last': True,
'collate_fn': collater,
'num_workers': opt.num_workers}
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
training_set = CocoDataset(root_dir=os.path.join(opt.data_path, params.project_name), set=params.train_set,
transform=transforms.Compose([Normalizer(mean=params.mean, std=params.std),
Augmenter(),
Resizer(input_sizes[opt.compound_coef])]))
training_generator = DataLoader(training_set, **training_params)
val_set = CocoDataset(root_dir=os.path.join(opt.data_path, params.project_name), set=params.val_set,
transform=transforms.Compose([Normalizer(mean=params.mean, std=params.std),
Resizer(input_sizes[opt.compound_coef])]))
val_generator = DataLoader(val_set, **val_params)
model = EfficientDetBackbone(num_classes=len(params.obj_list), compound_coef=opt.compound_coef,
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales))
# load last weights
if opt.load_weights is not None:
if opt.load_weights.endswith('.pth'):
weights_path = opt.load_weights
else:
weights_path = get_last_weights(opt.saved_path)
try:
last_step = int(os.path.basename(weights_path).split('_')[-1].split('.')[0])
except:
last_step = 0
try:
ret = model.load_state_dict(torch.load(weights_path), strict=False)
except RuntimeError as e:
print(f'[Warning] Ignoring {e}')
print(
'[Warning] Don\'t panic if you see this, this might be because you load a pretrained weights with different number of classes. The rest of the weights should be loaded already.')
print(f'[Info] loaded weights: {os.path.basename(weights_path)}, resuming checkpoint from step: {last_step}')
else:
last_step = 0
print('[Info] initializing weights...')
init_weights(model)
# freeze backbone if train head_only
if opt.head_only:
def freeze_backbone(m):
classname = m.__class__.__name__
for ntl in ['EfficientNet', 'BiFPN']:
if ntl in classname:
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
print('[Info] freezed backbone')
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# apply sync_bn when using multiple gpu and batch_size per gpu is lower than 4
# useful when gpu memory is limited.
# because when bn is disable, the training will be very unstable or slow to converge,
# apply sync_bn can solve it,
# by packing all mini-batch across all gpus as one batch and normalize, then send it back to all gpus.
# but it would also slow down the training by a little bit.
if params.num_gpus > 1 and opt.batch_size // params.num_gpus < 4:
model.apply(replace_w_sync_bn)
use_sync_bn = True
else:
use_sync_bn = False
writer = SummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
# warp the model with loss function, to reduce the memory usage on gpu0 and speedup
model = ModelWithLoss(model, debug=opt.debug)
if params.num_gpus > 0:
model = model.cuda()
if params.num_gpus > 1:
model = CustomDataParallel(model, params.num_gpus)
if use_sync_bn:
patch_replication_callback(model)
if opt.optim == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(model.parameters(), opt.lr, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
epoch = 0
best_loss = 1e5
best_epoch = 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
imgs = data['img']
annot = data['annot']
if params.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in CustomDataParallel, not here
imgs = imgs.cuda()
annot = annot.cuda()
optimizer.zero_grad()
cls_loss, reg_loss = model(imgs, annot, obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'train': cls_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
if step % opt.save_interval == 0 and step > 0:
save_checkpoint(model, f'efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth')
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.val_interval == 0:
model.eval()
loss_regression_ls = []
loss_classification_ls = []
for iter, data in enumerate(val_generator):
with torch.no_grad():
imgs = data['img']
annot = data['annot']
if params.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
cls_loss, reg_loss = model(imgs, annot, obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
loss = cls_loss + reg_loss
print(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, opt.num_epochs, cls_loss, reg_loss, loss))
writer.add_scalars('Loss', {'val': loss}, step)
writer.add_scalars('Regression_loss', {'val': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'val': cls_loss}, step)
if loss + opt.es_min_delta < best_loss:
best_loss = loss
best_epoch = epoch
save_checkpoint(model, f'efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth')
model.train()
# Early stopping
if epoch - best_epoch > opt.es_patience > 0:
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
break
except KeyboardInterrupt:
save_checkpoint(model, f'efficientdet-d{opt.compound_coef}_{epoch}_{step}.pth')
writer.close()
writer.close()
def save_checkpoint(model, name):
if isinstance(model, CustomDataParallel):
torch.save(model.module.model.state_dict(), os.path.join(opt.saved_path, name))
else:
torch.save(model.model.state_dict(), os.path.join(opt.saved_path, name))
if __name__ == '__main__':
opt = get_args()
train(opt)