Skip to content

Latest commit

 

History

History
66 lines (57 loc) · 2.49 KB

README_AIM3.md

File metadata and controls

66 lines (57 loc) · 2.49 KB

环境配置

经过多次实验的环境配置如下:

  • python==3.7.6 (3.6.0安装pytorch时会报错)
  • torch==1.4.0 (1.5.0与某些版本cuda在安装detectron2或apex时会有问题)
  • cuda==10.0

需要先安装正确版本的torch、opencv

pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
# torch官网没有给1.4.0和cuda10.0的安装方式 但是加上+cu100是有这个版本的
pip install opencv-python

接下来followREADME.md中的setup即可

Installation

  1. Clone the project including the required version (v0.2.1) of Detectron2

    # clone the repository inclduing Detectron2(@be792b9) 
    $ git clone --recursive https://github.com/zhangliang-04/bua-extract-feature.git
  2. Install Detectron2

    $ cd detectron2
    $ pip install -e .
    $ cd ..

We recommend using Detectron2 v0.2.1 (@be792b9) as backend for this project, which has been cloned in step 1. We believe a newer Detectron2 version is also compatible with this project unless their interface has been changed (we have tested v0.3 with PyTorch 1.5).

  1. Compile the rest tools using the following script:

    # install apex
    $ git clone https://github.com/NVIDIA/apex.git
    $ cd apex
    $ python setup.py install
    $ cd ..
    # install the rest modules
    $ python setup.py build develop
    $ pip install ray

在保证cuda版本一致的情况下 可以直接复制其他机器上配好的conda环境到本地的conda envs目录下

# 请根据conda环境地址和环境名更改
scp -r ~/miniconda2/envs/bua target_ip:~/miniconda2/envs/
source activate bua # 老版本conda
conda activate bua # 较新版本conda

激活环境后 torch 和 apex 就没有问题了,但是需要重新对detectron2和bua进行编译,执行:

   # 编译detectron2
   cd detectron2
   pip install -e .
   cd ..
   # 编译bua
   python setup.py build develop
   pip install ray

extract_features_faster.pyextract_features.py
注意使用extract_features_faster.py提取特征时,使用的cpu:gpu数量为8:1,否则会影响速度,详见这里 \

增加了--feat-struct参数,方便适配各种存储格式特征,根据需要修改utils/extract_utils.py 调整保存特征的内容和格式.

增加了--image-list参数 按图片路径list提取特征 输入是json格式的list