diff --git a/ib/ca/03_more_integration.tex b/ib/ca/03_more_integration.tex index 443e3f4..cda2999 100644 --- a/ib/ca/03_more_integration.tex +++ b/ib/ca/03_more_integration.tex @@ -9,8 +9,10 @@ \subsection{Winding numbers} \] \end{definition} If \( \gamma \) is a closed curve, \( I(\gamma;w) \) is an integer. -This is because \( \gamma(a) = \gamma(b) \) implies \( \exp(i\theta(b) - i\theta(a)) = 1 \). -If \( \theta_1 \colon [a,b] \to \mathbb C \) is also continuous such that \( \gamma(t) = w + re^{i\theta_1(t)} \), then \( \exp(i\theta(t) - i\theta_1(t)) = 1 \), so \( \frac{\theta_1(t) - \theta(t)}{2\pi} \in \mathbb Z \). +This is because +\[ \gamma(a) = \gamma(b) \implies \exp(i\theta(b) - i\theta(a)) = 1 \] +If \( \theta_1 \colon [a,b] \to \mathbb C \) is also continuous such that \( \gamma(t) = w + re^{i\theta_1(t)} \), then \( \exp(i\theta(t) - i\theta_1(t)) = 1 \), so +\[ \frac{\theta_1(t) - \theta(t)}{2\pi} \in \mathbb Z \] Since \( \theta_1 - \theta \) is continuous, this quotient must be a constant. Hence, \( I(\gamma;w) \) is well-defined and independent of the (continuous) choice of \( \theta \). \begin{lemma} diff --git a/ib/ca/04_singularities.tex b/ib/ca/04_singularities.tex index 538d317..3f9428a 100644 --- a/ib/ca/04_singularities.tex +++ b/ib/ca/04_singularities.tex @@ -87,7 +87,7 @@ \subsection{Poles} If \( a \in U \) is an isolated singularity of \( f \) that is not removable or a pole, it is an \textit{essential singularity}. \end{definition} \begin{remark} - An equivalent characterisation for \( a \) to be an essential singularity is that \( \lim_{z \to a} \abs{f(z)} \) does not exist. + An equivalent characterisation for \( a \) to be an essential singularity is that the limit \( \lim_{z \to a} \abs{f(z)} \) does not exist. This follows from the previous proposition and the definition of a pole. \end{remark} \begin{example} @@ -172,7 +172,9 @@ \subsection{Laurent series} When \( a \) is an essential singularity, we can still obtain an analogous series expansion with infinitely many terms with negative powers. More generally, we have the following. \begin{theorem}[Laurent expansion] - Let \( f \) be holomorphic on an annulus \( A = \qty{z \in \mathbb C \colon r < \abs{z-a} < R} \) for \( 0 \leq r < R \leq \infty \). + Let \( f \) be holomorphic on an annulus + \[ A = \qty{z \in \mathbb C \colon r < \abs{z-a} < R} \] + for \( 0 \leq r < R \leq \infty \). Then: \begin{enumerate} \item \( f \) has a unique convergent series expansion diff --git a/ib/geom/04_geometry_of_surfaces.tex b/ib/geom/04_geometry_of_surfaces.tex index 2bd1699..0bd10bb 100644 --- a/ib/geom/04_geometry_of_surfaces.tex +++ b/ib/geom/04_geometry_of_surfaces.tex @@ -294,9 +294,12 @@ \subsection{Area} \subsection{Second fundamental form} Let \( \sigma \colon V \to U \subseteq \Sigma \) be allowable. By using Taylor's theorem, we can write -\[ - \sigma(u+h,v+\ell) = \sigma(u,v) + h \sigma_u(u,v) + \ell \sigma_v(u,v) + \frac{1}{2} \qty(h^2 \sigma_{uu}(u,v) + 2h\ell \sigma_{uv}(u,v) + \ell^2 \sigma_{vv}(u,v)) + O(h^3,\ell^3) -\] +\begin{align*} + \sigma(u+h,v+\ell) &= \sigma(u,v) \\ + &+ h \sigma_u(u,v) + \ell \sigma_v(u,v) \\ + &+ \frac{1}{2} \qty(h^2 \sigma_{uu}(u,v) + 2h\ell \sigma_{uv}(u,v) + \ell^2 \sigma_{vv}(u,v)) \\ + &+ O(h^3,\ell^3) +\end{align*} where \( h,\ell \) are small, and \( (u+h,v+\ell) \in V \). Recall that if \( p = \sigma(u,v) \), we have \( T_p \Sigma = \genset{\qty{\sigma_u,\sigma_v}} \). Hence, the orthogonal distance from \( \sigma(u+h,v+\ell) \) to the affine tangent plane \( T_p \Sigma + p \) is given by projection to the normal direction. @@ -342,9 +345,11 @@ \subsection{Second fundamental form} 0 = \inner{n_u, \sigma_u} + \inner{n, \sigma_{uu}} = \inner{n_v, \sigma_v} + \inner{n, \sigma_{vv}} = \inner{n_v, \sigma_u} + \inner{n,\sigma_{uv}} \] Some of these terms appear in the definition of the second fundamental form: - \[ - L = \inner{n,\sigma_{uu}} = -\inner{n_u, \sigma_u};\quad M = \inner{n,\sigma_{uv}} = -\inner{n_v, \sigma_u} = -\inner{n_u, \sigma_v};\quad N = \inner{n,\sigma_{vv}} = -\inner{n_v, \sigma_v} - \] + \begin{align*} + L &= \inner{n,\sigma_{uu}} = -\inner{n_u, \sigma_u} \\ + M &= \inner{n,\sigma_{uv}} = -\inner{n_v, \sigma_u} = -\inner{n_u, \sigma_v} \\ + N &= \inner{n,\sigma_{vv}} = -\inner{n_v, \sigma_v} + \end{align*} If the second fundamental form vanishes, then \( n_u \) is orthogonal to \( \sigma_u \), \( \sigma_v \), and \( n \) itself. Since \( \sigma_u, \sigma_v, n \) form a basis for \( \mathbb R^3 \), we have \( n_u = 0 \). Similarly, \( n_v = 0 \), hence \( n \) is constant by the mean value theorem. @@ -465,7 +470,7 @@ \subsection{Gauss maps} \end{remark} \begin{lemma} The derivative of the Gauss map is self-adjoint. - More precisely, viewing \( D \eval{n}_p \colon T_p \Sigma \to T_p \Sigma \) as an endomorphism over the inner product space with the first fundamental form, this linear map satisfies + More precisely, viewing the map \( D \eval{n}_p \colon T_p \Sigma \to T_p \Sigma \) as an endomorphism over the inner product space with the first fundamental form, this linear map satisfies \[ \Iff_p\qty(D \eval{n}_p(v), w) = \Iff_p\qty(v, D \eval{n}_p(w)) \] @@ -665,9 +670,10 @@ \subsection{Elliptic, hyperbolic, and parabolic points} \abs{\kappa(u,v)} \in \qty(\abs{\kappa(p)}-\varepsilon, \abs{\kappa(p)}+\varepsilon) \] Hence, - \[ - \qty(\abs{\kappa(p)}-\varepsilon) \int_{V_i} \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} \leq \int_{V_i} \abs{\kappa(u,v)} \cdot \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} \leq \qty(\abs{\kappa(p)}+\varepsilon) \int_{V_i} \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} - \] + \begin{align*} + \qty(\abs{\kappa(p)}-\varepsilon) \int_{V_i} \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} &\leq \int_{V_i} \abs{\kappa(u,v)} \cdot \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} \\ + &\leq \qty(\abs{\kappa(p)}+\varepsilon) \int_{V_i} \norm{\sigma_u \times \sigma_v} \dd{u}\dd{v} + \end{align*} In other words, \[ \abs{\kappa(p)}-\varepsilon \leq \frac{\mathrm{area}_{S^2} (n(A_i))}{\mathrm{area}_{\Sigma} (A_i)} \leq \abs{\kappa(p)} + \varepsilon diff --git a/ib/geom/06_riemannian_metrics.tex b/ib/geom/06_riemannian_metrics.tex index 1cfc529..600148c 100644 --- a/ib/geom/06_riemannian_metrics.tex +++ b/ib/geom/06_riemannian_metrics.tex @@ -37,7 +37,7 @@ \subsection{Definitions} F & G \end{pmatrix} \] - So \( Df \) defines an isometry from an open set in the chart \( (U, \varphi(U) = V) \) to one in \( \qty(\widetilde U, \widetilde \varphi\qty(\widetilde U) = \widetilde V) \). + So \( Df \) defines an isometry from an open set in the chart \( (U, \varphi(U) = V) \) to one in the chart \( \qty(\widetilde U, \widetilde \varphi\qty(\widetilde U) = \widetilde V) \). \end{definition} This compatibility condition is the transition law for first fundamental forms for smooth surfaces in \( \mathbb R^3 \). \begin{example} diff --git a/ib/grm/10_algebraic_integers.tex b/ib/grm/10_algebraic_integers.tex index 18df796..548b205 100644 --- a/ib/grm/10_algebraic_integers.tex +++ b/ib/grm/10_algebraic_integers.tex @@ -128,7 +128,7 @@ \subsection{Algebraic integers} \end{definition} \begin{corollary} All minimal polynomials are irreducible. - By the isomorphism theorem, \( \faktor{\mathbb Q[X]}{(f)} \cong \mathbb Q[\alpha] \leq \mathbb C \). + By the first isomorphism theorem, \( \faktor{\mathbb Q[X]}{(f)} \cong \mathbb Q[\alpha] \leq \mathbb C \). Any subring of a field is an integral domain. Hence \( (f) \) is a prime ideal in \( \mathbb Q[X] \), and hence \( f \) is irreducible. In particular, this implies that \( \mathbb Q[\alpha] \) is a field. diff --git a/ib/grm/12_modules.tex b/ib/grm/12_modules.tex index 38a8a01..373683a 100644 --- a/ib/grm/12_modules.tex +++ b/ib/grm/12_modules.tex @@ -461,7 +461,7 @@ \subsection{The structure theorem} The \( d_i \) are called invariant factors. \end{theorem} \begin{proof} - Since \( n \) is finitely generated, there exists a surjective \( R \)-module homomorphism \( \varphi \colon R^m \to M \) for some \( m \). + Since \( M \) is a finitely generated module, there exists a surjective \( R \)-module homomorphism \( \varphi \colon R^m \to M \) for some \( m \). By the first isomorphism theorem, \( M \cong \faktor{R^m}{\ker \varphi} \). By the previous theorem, there exists a free basis \( x_1, \dots, x_m \) for \( R^m \) such that \( \ker \varphi \leq R^m \) is generated by \( d_1 x_1, \dots, d_t x_t \) and where \( d_1 \mid \dots \mid d_t \). Then, diff --git a/todo.txt b/todo.txt index 8fb3ba9..6662f1e 100644 --- a/todo.txt +++ b/todo.txt @@ -27,6 +27,5 @@ Create a version for print. - Remove colour. Search for words referencing colour in diagrams (e.g. "red") and replace text with suitable alternatives. - Spellcheck (unless it gets too cumbersome to program one to allow mathematical jargon). - Edit the introduction text. -- Add course introductions. - Based on font choices, edit spacing inside \faktor. - Fix appearance of \not, such as \not\to (this specific instance has been corrected).